0000000000676078
AUTHOR
Bartłomiej Wierzba
Numerical Determination of Intrinsic Diffusion Coefficient of Aluminide Coatings on Metals
This paper presents a numerical method to determine the composition dependent diffusivities and to predict the concentration profile during the interdiffusion process. The intrinsic diffusion coefficients in diffusion aluminide coatings (Fe-Al) were determined at 1000oC. The obtained diffusion coefficient for iron in Fe3Al or FeAl is in the range 10-10 to 10-9 cm2.s-1. The aluminum diffusion coefficient varies from 10-11 to 10-7 cm2.s-1 in the same phases.The present approach also permits to model the reactive diffusion in the Fe-Al systems.
Numerical Determination of Intrinsic Diffusion in Fe-Cr-Al Systems
The intrinsic diffusion coefficients in diffusion aluminide coatings based on Fe-30Cr were determined at 1000oC. The diffusion fluxes were given by the Nernst Planck formulae and the Darken method for multicomponent systems was applied. This paper summarizes some numerical results to determine the composition dependent diffusivities in Fe-Cr-Al systems. The method presented in this study to obtain average intrinsic diffusion coefficients is as an alternative to the Dayananda method. Our method based on empirical parameters allowed us to predict the concentration profile during the interdiffusion process.