0000000000677585

AUTHOR

Ane C Kvernvik

showing 2 related works from this author

Higher sensitivity towards light stress and ocean acidification in an Arctic sea-ice-associated diatom compared to a pelagic diatom.

2020

Thalassiosira hyalina and Nitzschia frigida are important members of Arctic pelagic and sympagic (sea-ice-associated) diatom communities. We investigated the effects of light stress (shift from 20 to 380 µmol photons m-2  s-1 , resembling upwelling or ice break-up) under contemporary and future pCO2 (400 vs 1000 µatm). The responses in growth, elemental composition, pigmentation and photophysiology were followed over 120 h and are discussed together with underlying gene expression patterns. Stress response and subsequent re-acclimation were efficiently facilitated by T. hyalina, which showed only moderate changes in photophysiology and elemental composition, and thrived under high light aft…

0106 biological sciences010504 meteorology & atmospheric sciencesPhysiologyOceans and SeasPlant Science01 natural sciencesAcclimatizationSeawater14. Life underwater0105 earth and related environmental sciencesDiatomsgeographygeography.geographical_feature_categorybiologyEcologyArctic Regions010604 marine biology & hydrobiologyPelagic zoneOcean acidificationHydrogen-Ion Concentrationbiology.organism_classificationArctic ice packLight intensityDiatomArctic13. Climate actionUpwellingThe New phytologistReferences
researchProduct

Arctic sea ice algae differ markedly from phytoplankton in their ecophysiological characteristics

2021

Photophysiological and biochemical characteristics were investigated in natural communities of Arctic sea ice algae and phytoplankton to understand their respective responses towards variable irradiance and nutrient regimes. This study revealed large differences in photosynthetic efficiency and capacity between the 2 types of algal assemblages. Sea ice algal assemblages clearly displayed increased photoprotective energy dissipation under the highest daily average irradiance levels (>8 µmol photons m-2 s-1). In contrast, phytoplankton assemblages were generally light-limited within the same irradiance ranges. Furthermore, phytoplankton assemblages exhibited more efficient carbon assimilat…

0106 biological sciencesgeographygeography.geographical_feature_category010504 meteorology & atmospheric sciencesEcologybiology010604 marine biology & hydrobiologyClimate changePelagic zoneAquatic Sciencebiology.organism_classification01 natural sciencesAlgal bloomArctic ice packOceanographyArcticAlgae13. Climate actionPhytoplanktonSea iceEnvironmental scienceVDP::Mathematics and natural science: 400::Zoology and botany: 480::Marine biology: 49714. Life underwaterEcology Evolution Behavior and Systematics0105 earth and related environmental sciences
researchProduct