0000000000677856
AUTHOR
Francisco De Assis De Carvalho Pinto
Sun-induced chlorophyll fluorescence III: benchmarking retrieval methods and sensor characteristics for proximal sensing
[EN] The interest of the scientific community on the remote observation of sun-induced chlorophyll fluorescence (SIF) has increased in the recent years. In this context, hyperspectral ground measurements play a crucial role in the calibration and validation of future satellite missions. For this reason, the European cooperation in science and technology (COST) Action ES1309 OPTIMISE has compiled three papers on instrument characterization, measurement setups and protocols, and retrieval methods (current paper). This study is divided in two sections; first, we evaluated the uncertainties in SIF retrieval methods (e.g., Fraunhofer line depth (FLD) approaches and spectral fitting method (SFM))…
Sun Induced Fluorescence Calibration and Validation for Field Phenotyping
Reliable measurements of Sun Induced Fluorescence (SIF) require a good instrument characterization as well as a complex processing chain. In this paper, we summarize the state of the art SIF retrieval methods and measurements platforms for field phenotyping. Furthermore, we use HyScreen, hyperspectral-imaging system for top of canopy measurements of SIF, as an example of the instrument requirements, data process, and data validation needed to obtain reliable measurements of SIF.
Red and far-red sun-induced chlorophyll fluorescence as a measure of plant photosynthesis
Remote estimation of Sun-induced chlorophyll fluorescence emitted by terrestrial vegetation can provide an unparalleled opportunity to track spatiotemporal variations of photosynthetic efficiency. Here we provide the first direct experimental evidence that the two peaks of the chlorophyll fluorescence spectrum can be accurately mapped from high-resolution radiance spectra and that the signal is linked to variations in actual photosynthetic efficiency. Red and far red fluorescence measured using a novel airborne imaging spectrometer over a grass carpet treated with an herbicide known to inhibit photosynthesis was significantly higher than the corresponding signal from an equivalent untreated…
Remote sensing of sun-induced chlorophyll fluorescence at different scales
In this contribution we present activities and selected results obtained in recent studies and campaigns conducted in the context of the FLuorescence EXplorer (FLEX) mission. FLEX is a candidate mission for the ESA 8th Earth Explorer and large efforts are currently dedicated to the development of an implementation scheme for an accurate mapping of fluorescence from the selected spaceborne sensor and mission configuration. Field and airborne data collected in different experimental campaigns, together with simulated data, have been used to demonstrate the feasibility of fluorescence retrievals and the potential of exploiting high spatial resolution fluorescence maps for a better understandin…
The 2013 FLEX—US Airborne Campaign at the Parker Tract Loblolly Pine Plantation in North Carolina, USA
The first European Space Agency (ESA) and NASA collaboration in an airborne campaign to support ESA’s FLuorescence EXplorer (FLEX) mission was conducted in North Carolina, USA during September–October 2013 (FLEX-US 2013) at the Parker Tract Loblolly Pine (LP) Plantation (Plymouth, NC, USA). This campaign combined two unique airborne instrument packages to obtain simultaneous observations of solar-induced fluorescence (SIF), LiDAR-based canopy structural information, visible through shortwave infrared (VSWIR) reflectance spectra, and surface temperature, to advance vegetation studies of carbon cycle dynamics and ecosystem health. We obtained statistically significant results for fluorescence…
Sun-induced fluorescence - a new probe of photosynthesis: First maps from the imaging spectrometer HyPlant.
Variations in photosynthesis still cause substantial uncertainties in predicting photosynthetic CO2 uptake rates and monitoring plant stress. Changes in actual photosynthesis that are not related to greenness of vegetation are difficult to measure by reflectance based optical remote sensing techniques. Several activities are underway to evaluate the sun-induced fluorescence signal on the ground and on a coarse spatial scale using space-borne imaging spectrometers. Intermediate-scale observations using airborne-based imaging spectroscopy, which are critical to bridge the existing gap between small-scale field studies and global observations, are still insufficient. Here we present the first …