0000000000680400

AUTHOR

W. Meczynski

showing 7 related works from this author

Population of neutron-rich nuclei around 48ca with deep inelastic collisions

2009

The deep inelastic reaction 48Ca+64Ni at 6 MeV/A has been studied using the CLARA–PRISMA setup. Angular distributions for pure elastic scattering and total cross-sections of the most relevant transfer channels have been measured. The experimental results are compared with predictions from a semiclassical model, showing good agreement for the presently analyzed few neutrons transfer channels. The decay of the most intense reaction products has also been studied, giving indications of the population of states with very short lifetimes. Gadea Raga, Andrés, Gadea.Andres@ific.uv.es

Neutron-rich nucleiReacción InelásticaUNESCO::FÍSICAUNESCO::FÍSICA::Nucleónica::Física de partículasInelastic collision Neutron-rich nuclei Reaction products Semiclassical model Transfer channel; Angular distribution; CalciumReaction productsCanales de transmisiónSemiclassical modelCLARA–PRISMAReacción Inelástica ; CLARA–PRISMA ; Distribuciones angulares ; Secciones cruzadas ; Modelo semiclásico ; Canales de transmisión ; Muy corta vidaInelastic collisionDistribuciones angularesdeep inelastic reaction; semiclassical model; closed shell nuceli:FÍSICA [UNESCO]:FÍSICA::Nucleónica::Física de partículas [UNESCO]Muy corta vidaTransfer channelSecciones cruzadasCalciumAngular distributionModelo semiclásico
researchProduct

Probing the nature of particle–core couplings in 49Ca with γ spectroscopy and heavy-ion transfer reactions

2011

Neutron rich nuclei around 48Ca have been measured with the CLARA–PRISMA setup, making use of 48Ca on 64Ni binary reactions, at 5.9 MeV/A. Angular distributions of γ rays give evidence, in several transfer channels, for a large spin alignment (≈70%) perpendicular to the reaction plane, making it possible to firmly establish spin and parities of the excited states. In the case of 49Ca, states arising from different types of particle–core couplings are, for the first time, unambiguously identified on basis of angular distribution, polarization and lifetime measurements. Shell model and particle–vibration coupling calculations are used to pin down the nature of the states. Evidence is found fo…

CouplingPhysicsNuclear and High Energy PhysicsPhononMagnetic spectrometerPolarization (waves)Multi-nucleon transferGamma spectroscopyExcited stateNeutronGamma spectroscopyParticle–core couplingMulti-nucleon transfer ; Gamma spectroscopy ; Magnetic spectrometer ; Particle–core couplingAtomic physicsSpectroscopyExcitationPhysics Letters B
researchProduct

Reaction dynamics and nuclear structure studies via deep inelastic collisions with heavy-ions: spin and parity assignment in49Ca

2011

The population and gamma decay of neutron rich nuclei around 48Ca has been measured at Legnaro National Laboratory with the PRISMA-CLARA setup, using deep-inelastic collisions (DIC) on 64Ni, at an energy approximately twice the Coulomb barrier. The reaction properties of the main products are investigated, focusing on total cross sections and angular distributions both integrated in energy and associated to the population of specific excited states. Gamma spectroscopy studies are also performed, giving evidence, for the first time in transfer reactions with heavy ions, of a large spin alignment (~70%), perpendicular to the reaction plane. This makes possible the use of angular distributions…

PhysicsHistoryeducation.field_of_studyPopulationInelastic collisionGamma rayCoulomb barrierComputer Science ApplicationsEducationReaction dynamicsExcited stateNeutronAtomic physicsNuclear ExperimentNucleoneducation
researchProduct

Gamma-spectroscopy of the 199At nucleus with the recoil filter detector

1998

The neutron deficient 199At nucleus has been studied in the 175Lu+28Si reaction at Eb= 141 MeV. In order to select events of interest in the presence of the very strong background caused by fission, γ-rays have been detected in coincidence with recoiling evaporation residues. The excited states of 199At observed for the first time may indicate that this nucleus is deformed.

PhysicsNuclear and High Energy Physics[PHYS.NEXP] Physics [physics]/Nuclear Experiment [nucl-ex]010308 nuclear & particles physicsFissionNuclear TheoryHadron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesNuclear physicsRecoilmedicine.anatomical_structureExcited state0103 physical sciencesmedicineNuclear fusionGamma spectroscopyNeutronAtomic physicsNuclear Experiment010306 general physicsNucleus
researchProduct

Interaction position resolution simulations and in-beam measurements of the AGATA HPGe detectors

2011

WOS: 000290082600015

Nuclear and High Energy PhysicsFusion-evaporation ReactionsPhysics::Instrumentation and Detectorsg-ray trackingAstrophysics::High Energy Astrophysical PhenomenaMonte Carlo methodEvaporationRay tracking[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesParticle detectorNuclear physicsAGATA Fusion-evaporation reactions HPGe detectors Monte Carlo Simulation Ray tracking; Computer simulation Evaporation Monte Carlo methods Phase transitions; DetectorsHPGe Detectors0103 physical sciencesNuclear Experiment010306 general physicsInstrumentationGamma-ray TrackingPhysics010308 nuclear & particles physics4. EducationResolution (electron density)DetectorMonte Carlo SimulationMonte Carlo methodsDetectorsComputer simulationSemiconductor detectorPhase transitionsMonte Carlo SimulationsMeasuring instrumentHigh Energy Physics::ExperimentAGATAAGATABeam (structure)
researchProduct

Identification of the 13/2+ isomer in 199At

2000

The 13/2+ isomeric state in the 199At nucleus has been identified at an excitation energy of 573 keV and its half-life measured to be 580(130) ns using the recoil-decay tagging technique.

PhysicsNuclear and High Energy Physicsmedicine.anatomical_structureHadronmedicineAnalytical chemistryNuclear fusionAtomic physicsNuclear ExperimentNucleusExcitationThe European Physical Journal A
researchProduct

Shell model and octupole states in148Gd from in-beam experiments

1990

Through (α, 4n) and (τ, 3n) reactions the high-spin states in the two-neutron nucleus148Gd were populated up toI π=21− at 7.2 MeV, including numerous states above the yrast line. The148Gd energy spectrum is interpreted in terms of the spherical shell model. Identification of the (νf 7/2 i 1 3/2)10− state gives the νi 13/2 single particle energy free of octupole admixtures as 2.1(1) MeV. Eight high-spin states between 1.2 and 3.7 MeV were identified as the couplings of the two valence-particles to the146Gd octupole phonon, and three above-lying levels are assigned as double-octupole excitations including a 12+ state which decays by anE3-E3 stretched cascade. All these octupole levels can be …

PhysicsNuclear and High Energy PhysicsCascadePhononYrastNuclear fusionState (functional analysis)Atomic physicsSpherical shellBeam (structure)Line (formation)
researchProduct