0000000000680632

AUTHOR

Beatriz Seoane

showing 10 related works from this author

Insights into the Dynamics of Grotthuss Mechanism in a Proton-Conducting Chiral bioMOF

2016

Proton conduction in solids attracts great interest, not only because of possible applications in fuel cell technologies, but also because of the main role of this process in many biological mechanisms. Metal–organic frameworks (MOFs) can exhibit exceptional proton-conduction performances, because of the large number of hydrogen-bonded water molecules embedded in their pores. However, further work remains to be done to elucidate the real conducting mechanism. Among the different MOF subfamilies, bioMOFs, which have been constructed using biomolecule derivatives as building blocks and often affording water-stable materials, emerge as valuable systems to study the transport mechanisms involve…

chemistry.chemical_classificationMaterials scienceProtonGeneral Chemical EngineeringBiomoleculeNanotechnology02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical scienceschemistryMaterials ChemistryMoleculeFuel cellsGrotthuss mechanism0210 nano-technologyPorosityChemistry of Materials
researchProduct

Postsynthetic Improvement of the Physical Properties in a Metal-Organic Framework through a Single Crystal to Single Crystal Transmetallation

2015

As ingle crystal to single crystal transmetallation process takes place in the three-dimensional (3D) metal- organic framework (MOF) of formula Mg II 2{Mg II 4(Cu II 2- (Me3mpba)2)3}·45 H2 O( 1 ;M e 3mpba 4¢ = N,N'-2,4,6-trimethyl- 1,3-phenylenebis(oxamate)). After complete replacement of the Mg II ions within the coordination network and those hosted in the channels by either Co II or Ni II ions, 1 is transmetallated to yield two novel MOFs of formulae Co2 II {Co II 4(Cu II 2(Me3- mpba)2)3}·56 H2 O( 2 )a nd Ni2 II {Ni II 4(Cu II 2(Me3mpba)2)3}· 54 H2 O( 3). This unique postsynthetic metal substitution affords materials with higher structural stability leading to enhanced gas sorption and m…

ChemistryLigandStereochemistryMetal ions in aqueous solutionSupramolecular chemistryGeneral MedicineGeneral ChemistryCatalysisMetalCrystalTransmetalationCrystallographyvisual_artYield (chemistry)visual_art.visual_art_mediumSingle crystalAngewandte Chemie International Edition
researchProduct

Tuning the selectivity of light hydrocarbons in natural gas in a family of isoreticular MOFs

2017

Purification of methane from other light hydrocarbons in natural gas is a topic of intense research due to its fundamental importance in the utilization of natural gas fields. Porous materials have emerged as excellent alternative platforms to conventional cryogenic methodologies to perform this task in a cost- and energy-efficient manner. Here we report a new family of isoreticular chiral MOFs, prepared from oxamidato ligands derived from natural amino acids L-alanine, L-valine and L-leucine, where, by increasing the length of the alkyl residue of the amino acid, the charge density of the MOF's channels can be tuned (1 > 2 > 3), decreasing the adsorption preference towards methane over lig…

Inorganic chemistry02 engineering and technology010402 general chemistry01 natural sciences7. Clean energyMethaneIsoreticularchemistry.chemical_compoundAdsorptionLight hydrocarbonsNatural gasGeneral Materials ScienceAlkylchemistry.chemical_classificationQuímica InorgánicaRenewable Energy Sustainability and the Environmentbusiness.industryRational designCharge densityGeneral ChemistryNatural gas021001 nanoscience & nanotechnologyMOFs0104 chemical scienceschemistryChemical engineering13. Climate action0210 nano-technologySelectivityPorous mediumbusiness
researchProduct

CCDC 1451174: Experimental Crystal Structure Determination

2017

Related Article: Thais Grancha, Jesús Ferrando-Soria, Joan Cano, Pedro Amoros , Beatriz Seoane, Jorge Gascon, Montse Bazaga-García, Enrique R. Losilla, Aurelio Cabeza, Donatella Armentano, Emilio Pardo|2016|Chem.Mater.|28|4608|doi:10.1021/acs.chemmater.6b01286

catena-[tris(mu-NN'-bis((S)-2-propanoato)oxamide)-(mu-aqua)-bis(mu-hydroxy)-calcium(ii)-hexa-copper(ii) hydrate]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1530550: Experimental Crystal Structure Determination

2017

Related Article: Thais Grancha, Marta Mon, Jesús Ferrando-Soria, Jorge Gascon, Beatriz Seoane, Enrique V. Ramos-Fernandez, Donatella Armentano, Emilio Pardo|2017|J.Mater.Chem.A|5|11032|doi:10.1039/C7TA01179B

Space GroupCrystallographycatena-[tris(mu-22'-[(12-dioxoethane-12-diyl)bis(azanidediyl)]bis(4-methylpentanoate))-bis(mu-hydroxo)-(mu-aqua)-calcium-hexa-copper unknown solvate undecahydrate]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1432054: Experimental Crystal Structure Determination

2016

Related Article: Thais Grancha, Jesús Ferrando-Soria, Joan Cano, Pedro Amoros , Beatriz Seoane, Jorge Gascon, Montse Bazaga-García, Enrique R. Losilla, Aurelio Cabeza, Donatella Armentano, Emilio Pardo|2016|Chem.Mater.|28|4608|doi:10.1021/acs.chemmater.6b01286

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatescatena-(tris(mu-22'-((12-dihydroxyethane-12-diylidene)diazanylylidene)dipropanoato)-tris(mu-hydroxo)-calcium-hexa-copper dotriacontahydrate)
researchProduct

CCDC 1030505: Experimental Crystal Structure Determination

2015

Related Article: Thais Grancha, Jesús Ferrando-Soria, Hong-Cai Zhou, Jorge Gascon, Beatriz Seoane, Jorge Pasán, Oscar Fabelo, Miguel Julve and Emilio Pardo|2015|Angew.Chem.,Int.Ed.|54|6521|doi:10.1002/anie.201501691

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametershexa-nickel bis(mu-24-bis([carboxylato(oxidanidyl)methylidene]amino)-135-trimethylbenzene)-tetra-aqua-di-copper bis(bis(24-bis([carboxylato(oxidanidyl)methylidene]amino)-135-trimethylbenzene)-diaqua-dicopper) nonahydrateExperimental 3D Coordinates
researchProduct

CCDC 1530549: Experimental Crystal Structure Determination

2017

Related Article: Thais Grancha, Marta Mon, Jesús Ferrando-Soria, Jorge Gascon, Beatriz Seoane, Enrique V. Ramos-Fernandez, Donatella Armentano, Emilio Pardo|2017|J.Mater.Chem.A|5|11032|doi:10.1039/C7TA01179B

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tris(mu-22'-[(12-dioxoethane-12-diyl)bis(azanidediyl)]bis(4-methylpentanoate))-bis(mu-hydroxo)-(mu-aqua)-calcium-hexa-copper unknown solvate tridecahydrate]Experimental 3D Coordinates
researchProduct

CCDC 1030506: Experimental Crystal Structure Determination

2015

Related Article: Thais Grancha, Jesús Ferrando-Soria, Hong-Cai Zhou, Jorge Gascon, Beatriz Seoane, Jorge Pasán, Oscar Fabelo, Miguel Julve and Emilio Pardo|2015|Angew.Chem.,Int.Ed.|54|6521|doi:10.1002/anie.201501691

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametershexa-cobalt bis(mu-24-bis([carboxylato(oxidanidyl)methylidene]amino)-135-trimethylbenzene)-tetra-aqua-di-copper bis(bis(24-bis([carboxylato(oxidanidyl)methylidene]amino)-135-trimethylbenzene)-diaqua-dicopper) dodecahydrateExperimental 3D Coordinates
researchProduct

CCDC 1030504: Experimental Crystal Structure Determination

2015

Related Article: Thais Grancha, Jesús Ferrando-Soria, Hong-Cai Zhou, Jorge Gascon, Beatriz Seoane, Jorge Pasán, Oscar Fabelo, Miguel Julve and Emilio Pardo|2015|Angew.Chem.,Int.Ed.|54|6521|doi:10.1002/anie.201501691

Space GroupCrystallographyCrystal Systemhexa-magnesium bis(mu-24-bis([carboxylato(oxidanidyl)methylidene]amino)-135-trimethylbenzene)-tetra-aqua-di-copper bis(bis(24-bis([carboxylato(oxidanidyl)methylidene]amino)-135-trimethylbenzene)-diaqua-dicopper) hexahydrateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct