0000000000681602
AUTHOR
Zoltan Fodor
Cluster Formation during Expansion of Hot and Compressed Nuclear Matter Produced in Central Collisions of Au on Au at 250AMeV
Complete distributions of the light and intermediate mass fragments ({ital Z}=1--6) produced within the polar angular range 1{sup {circ}}{le}{Theta}{sub lab}{le}30{sup {circ}} in highly central collisions of 250{ital A} MeV Au+Au are presented. The results of this measurement and a model analysis are used to study the expansion and clustering of the hot and compressed transient state formed in central collisions of such a heavy system. The influence of the initial conditions on the final observables is discussed.
Sideward flow in Au + Au collisions at 400 A.MeV
Abstract We present new experimental data obtained with the FOPI detector at SIS, for the Au + Au heavy-ion collisions at 400 A MeV incident energy. The sideward flow, determined from a method without reaction-plane reconstruction, and the nuclear stopping are studied as a function of the centrality of the collisions. In order to study the nuclear in-medium effects, which act on the NN cross sections and potential and hence on experimental observables like the nuclear-matter flow and stopping, these results are compared with the predictions of two different QMD versions. The first one offers a fully microscopic calculation of the cross sections and potential in the G-matrix formalism and na…
Evidence for collective expansion in light-particle emission following Au+Au collisions at 100, 150 and 250 A·MeV
Abstract Light-particle emission from Au+Au collisions has been studied in the bombarding-energy range 100–250 A ·MeV, using ΔE − E R telescopes in coincidence with the FOPI detector in its phase I configuration. Center-of-mass energy spectra have been measured for Z = 1,2 isotopes emitted in central collisions at CM polar angles between 60° and 90°. Evidence for a collective expansion is reported, on the basis of the mean kinetic energies of hydrogen isotopes. Comparison is presented with statistical calculations (WIX code). For CM kinetic energy spectra, fair agreement is found between data and a recently developed transport model.