0000000000682107

AUTHOR

L. Ortiz-bobadilla

showing 3 related works from this author

Infinite orbit depth and length of Melnikov functions

2019

Abstract In this paper we study polynomial Hamiltonian systems d F = 0 in the plane and their small perturbations: d F + ϵ ω = 0 . The first nonzero Melnikov function M μ = M μ ( F , γ , ω ) of the Poincare map along a loop γ of d F = 0 is given by an iterated integral [3] . In [7] , we bounded the length of the iterated integral M μ by a geometric number k = k ( F , γ ) which we call orbit depth. We conjectured that the bound is optimal. Here, we give a simple example of a Hamiltonian system F and its orbit γ having infinite orbit depth. If our conjecture is true, for this example there should exist deformations d F + ϵ ω with arbitrary high length first nonzero Melnikov function M μ along…

PolynomialDynamical Systems (math.DS)Iterated integrals01 natural sciencesHamiltonian system03 medical and health sciences0302 clinical medicineFOS: MathematicsCenter problem030212 general & internal medicine0101 mathematicsMathematics - Dynamical Systems[MATH]Mathematics [math]Mathematical PhysicsMathematical physicsPoincaré mapPhysicsConjecturePlane (geometry)Applied Mathematics010102 general mathematicsMSC : primary 34C07 ; secondary 34C05 ; 34C08Loop (topology)Bounded functionMAPOrbit (control theory)Analysis34C07 34C05 34C08
researchProduct

Nilpotence of orbits under monodromy and the length of Melnikov functions

2021

Abstract Let F ∈ ℂ [ x , y ] be a polynomial, γ ( z ) ∈ π 1 ( F − 1 ( z ) ) a non-trivial cycle in a generic fiber of F and let ω be a polynomial 1-form, thus defining a polynomial deformation d F + e ω = 0 of the integrable foliation given by F . We study different invariants: the orbit depth k , the nilpotence class n , the derivative length d associated with the couple ( F , γ ) . These invariants bind the length l of the first nonzero Melnikov function of the deformation d F + e ω along γ . We analyze the variation of the aforementioned invariants in a simple but informative example, in which the polynomial F is defined by a product of four lines. We study as well the relation of this b…

PhysicsPure mathematicsSequencePolynomialConjectureMelnikov functionAbelian integrals010102 general mathematicsStatistical and Nonlinear PhysicsIterated integralsCondensed Matter Physics01 natural sciencesNilpotence classFoliationDisplacement functionLimit cyclesMonodromySimple (abstract algebra)[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Product (mathematics)0103 physical sciences010307 mathematical physics0101 mathematicsOrbit (control theory)ComputingMilieux_MISCELLANEOUS
researchProduct

Godbillon–Vey sequence and Françoise algorithm

2019

Abstract We consider foliations given by deformations d F + ϵ ω of exact forms dF in C 2 in a neighborhood of a family of cycles γ ( t ) ⊂ F − 1 ( t ) . In 1996 Francoise gave an algorithm for calculating the first nonzero term of the displacement function Δ along γ of such deformations. This algorithm recalls the well-known Godbillon–Vey sequences discovered in 1971 for investigation of integrability of a form ω. In this paper, we establish the correspondence between the two approaches and translate some results by Casale relating types of integrability for finite Godbillon–Vey sequences to the Francoise algorithm settings.

SequenceFrançoise algorithmGeneral Mathematics010102 general mathematicsTerm (logic)IntegrabilityMelnikov functions01 natural sciencesMathematics::K-Theory and HomologyDisplacement functionMAP0101 mathematics[MATH]Mathematics [math]AlgorithmGodbillon–Vey sequenceMathematics
researchProduct