0000000000683380

AUTHOR

C Orlando

Free vibrations of magnetoelectric bimorph beam devices by third order shear deformation theory

research product

On the shear influence on the free vibration behavior of magneto-electro-elastic beam

A magneto-electro-elastic Timoshenko beam model is presented and employed to study the effect of the shear strain on the free vibration behavior of the beam. Once the differential governing equation for Timoshenko magneto-electro-elastic beam is derived, the Euler-Bernoulli model is obtained by letting be zero some of the governing equation coefficients. Results for the Timoshenko and Euler- Bernoulli beam are presented in comparison with two-dimensional finite element computation.

research product

A Theory for Multilayered Composite Beams

Composite laminates are nowadays widely employed as lightweight components in civil engineering, automotive and aerospace applications due to their excellent mechanical properties, such as, the high strength and stiffness per unit weight, the path loads management capability. Moreover by using composite laminated materials it is possible to manufacture large size structures with less riveted joints, which leads to a reduction of the overall structural complexity and of the manufacturing and inspection times and costs. A drawback of layered composites is represented by the the low values of throughthe-thickness tensile and shear strengths, with respect to the in-plane ones, that affect the o…

research product

MITC FINITE ELEMENTS FOR MAGNETO-ELECTRO-ELASTIC PLATES BASED ON EQUIVALENT SINGLE-LAYER THEORY

Finite elements for magneto-electro-elastic laminated plates are formulated. They are based on an equivalent single-layer model, which assumes the first order shear deformation theory and quasi-static behavior for the electric and magnetic fields. To infer the plate model, the electro-magnetic state is firstly determined and condensed to the the mechanical primary variables, namely the generalized displacements. In turn, this result is used into the layers constitutive law to obtain the equivalent single-layer laminate constitutive relationship that expresses the plate mechanical stress resultants in terms of the generalized displacements taking the magneto-electro-elastic couplings into ac…

research product

A model for multilayered beams undergoing end loads

A formulation for layered beams undergoing end loads, namely axial, shear and bending actions, is developed and presented in this paper. A layer-wise kinematical model is first derived so that the point-wise balance relationships are fulfilled at the layer level. Successively, by enforcing the interface continuity conditions and taking the traction–free conditions on the top and bottom surfaces of the laminate into account, the layer-wise kinematical quantities are written in terms of generalized kinematical variables representative of the beam displacements field. The beam problem is then formulated in terms of these generalized variables leading to a model that shows the positive characte…

research product