0000000000683600
AUTHOR
Diego Santos-garcia
Complete Genome Sequence of “Candidatus Portiera aleyrodidarum” BT-QVLC, an Obligate Symbiont That Supplies Amino Acids and Carotenoids to Bemisia tabaci
ABSTRACT The genome of “ Candidatus Portiera aleyrodidarum,” the primary endosymbiont of the whitefly Bemisia tabaci (Mediterranean species), is reported. It presents a reduced genome (357 kb) encoding the capability to synthetize, or participate in the synthesis of, several amino acids and carotenoids, being the first insect endosymbiont capable of supplying carotenoids.
Genome reduction and potential metabolic complementation of the dual endosymbionts in the whitefly Bemisia tabaci
Background The whitefly Bemisia tabaci is an important agricultural pest with global distribution. This phloem-sap feeder harbors a primary symbiont, “Candidatus Portiera aleyrodidarum”, which compensates for the deficient nutritional composition of its food sources, and a variety of secondary symbionts. Interestingly, all of these secondary symbionts are found in co-localization with the primary symbiont within the same bacteriocytes, which should favor the evolution of strong interactions between symbionts. Results In this paper, we analyzed the genome sequences of the primary symbiont Portiera and of the secondary symbiont Hamiltonella in the B. tabaci Mediterranean (MED) species in orde…
Slow and fast evolving endosymbiont lineages: positive correlation between the rates of synonymous and nonsynonymous substitution
The availability of complete genome sequences of bacterial endosymbionts with strict vertical transmission to the host progeny opens the possibility to estimate molecular evolutionary rates in different lineages and understand the main biological mechanisms influencing these rates. We have compared the rates of evolution for non-synonymous and synonymous substitutions in nine bacterial endosymbiont lineages, belonging to four clades (Baumannia, Blochmannia, Portiera, and Sulcia). The main results are the observation of a positive correlation between both rates with differences among lineages of up to three orders of magnitude and that the substitution rates decrease over long endosymbioses.…
Nature lessons: the whitefly bacterial endosymbiont is a minimal amino acid factory with unusual energetics
Reductive genome evolution is a universal phenomenon observed in endosymbiotic bacteria in insects. As the genome reduces its size and irreversibly losses coding genes, the functionalities of the cell system, including the energetics processes, are more restricted. Several energetic pathways can also be lost. How do these reduced metabolic networks sustain the energy needs of the system? Among the bacteria with reduced genomes Candidatus Portiera aleyrodidarum, obligate endosymbiont of whiteflies, represents an extreme case since lacks several key mechanisms for ATP generation. Thus, to analyze the cell energetics in this system, a genome-scale metabolic model of this endosymbiont was const…
To B or Not to B: Comparative Genomics Suggests Arsenophonus as a Source of B Vitamins in Whiteflies
Insect lineages feeding on nutritionally restricted diets such as phloem sap, xylem sap, or blood, were able to diversify by acquiring bacterial species that complement lacking nutrients. These bacteria, considered obligate/primary endosymbionts, share a long evolutionary history with their hosts. In some cases, however, these endosymbionts are not able to fulfill all of their host's nutritional requirements, driving the acquisition of additional symbiotic species. Phloem-feeding members of the insect family Aleyrodidae (whiteflies) established an obligate relationship with Candidatus Portiera aleyrodidarum, which provides its hots with essential amino acids and carotenoids. In addition, ma…
To B or not to B: Arsenophonus as a source of B-vitamins in whiteflies
1AbstractInsect lineages feeding on nutritionally restricted diets such as phloem, xylem, or blood, were able to diversify by acquiring bacterial species that complemented the missing nutrients. These bacteria, considered obligate/primary endosymbionts, share a long evolutionary history with their hosts. In some cases, however, these endosymbionts are not able to fulfill all the nutritional requirements of their host, driving the acquisition of additional symbiotic species. Whiteflies, which feed on phloem, established an obligate relationship with Candidatus Portiera aleyrodidarum, who provides essential amino acids and carotenoids to the host. As many Whiteflies species harbor additional …
Genome Evolution in the Primary Endosymbiont of Whiteflies Sheds Light on Their Divergence
International audience; Hemipteran insects are well-known in their ability to establish symbiotic relationships with bacteria. Among them, heteropteran insects present an array of symbiotic systems, ranging from the most common gut crypt symbiosis to the more restricted bacteriome-associated endosymbiosis, which have only been detected in members of the superfamily Lygaeoidea and the family Cimicidae so far. Genomic data of heteropteran endosymbionts are scarce and have merely been analyzed from the Wolbachia endosymbiont in bed bug and a few gut crypt-associated symbionts in pentatomoid bugs. In this study, we present the first detailed genomic analysis of a bacteriome-associated endosymbi…
The All-Rounder Sodalis: A New Bacteriome-Associated Endosymbiont of the Lygaeoid Bug Henestaris halophilus (Heteroptera: Henestarinae) and a Critical Examination of Its Evolution
International audience; Hemipteran insects are well-known in their ability to establish symbiotic relationships with bacteria. Among them, heteropteran insects present an array of symbiotic systems, ranging from the most common gut crypt symbiosis to the more restricted bacteriome-associated endosymbiosis, which have only been detected in members of the superfamily Lygaeoidea and the family Cimicidae so far. Genomic data of heteropteran endosymbionts are scarce and have merely been analyzed from the Wolbachia endosymbiont in bed bug and a few gut crypt-associated symbionts in pentatomoid bugs. In this study, we present the first detailed genomic analysis of a bacteriome-associated endosymbi…
The Genome of Cardinium cBtQ1 Provides Insights into Genome Reduction, Symbiont Motility, and Its Settlement in Bemisia tabaci
International audience; Many insects harbor inherited bacterial endosymbionts. Although some of them are not strictly essential and are considered facultative, they can be a key to host survival under specific environmental conditions, such as parasitoid attacks, climate changes, or insecticide pressures. The whitefly Bemisia tabaci is at the top of the list of organisms inflicting agricultural damage and outbreaks, and changes in its distribution may be associated to global warming. In this work, we have sequenced and analyzed the genome of Cardinium cBtQ1, a facultative bacterial endosymbiont of B. tabaci and propose that it belongs to a new taxonomic family, which also includes Candidatu…
The genomic sequence of Exiguobacterium chiriqhucha str. N139 reveals a species that thrives in cold waters and extreme environmental conditions
We report the genome sequence of Exiguobacterium chiriqhucha str. N139, isolated from a high-altitude Andean lake. Comparative genomic analyses of the Exiguobacterium genomes available suggest that our strain belongs to the same species as the previously reported E. pavilionensis str. RW-2 and Exiguobacterium str. GIC 31. We describe this species and propose the chiriqhucha name to group them. ‘Chiri qhucha’ in Quechua means ‘cold lake’, which is a common origin of these three cosmopolitan Exiguobacteria. The 2,952,588-bp E. chiriqhucha str. N139 genome contains one chromosome and three megaplasmids. The genome analysis of the Andean strain suggests the presence of enzymes that confer E. ch…
Tremblaya phenacola PPER: an evolutionary beta-gammaproteobacterium collage
Many insects rely on bacterial endosymbionts to obtain nutrients that are scarce in their highly specialized diets. The most surprising example corresponds to the endosymbiotic system found in mealybugs from subfamily Pseudococcinae in which two bacteria, the betaproteobacterium 'Candidatus Tremblaya princeps' and a gammaproteobacterium, maintain a nested endosymbiotic consortium. In the sister subfamily Phenacoccinae, however, a single beta-endosymbiont, 'Candidatus Tremblaya phenacola', has been described. In a previous study, we detected a trpB gene of gammaproteobacterial origin in 'Ca. Tremblaya phenacola' from two Phenacoccus species, apparently indicating an unusual case of horizonta…
Exiguobacterium pavilionensis str. N139, a halotolerant, UV-B and metal resistant bacteria from a high-altitude Andean lake
We report the genome sequence of Exiguobacterium pavilionensis str. N139, isolated from a high-altitude Andean lake. The 2,952,588-bp genome contains one chromosome and three megaplasmids. The genome analysis suggests the presence of enzymes that confer E. pavilionensis str. N139 the ability to grow under multiple environmental extreme conditions, including high concentrations of different metals and high ultraviolet B radiation. Moreover, the regulation of its tryptophan biosynthesis suggests that novel pathways remain to be discovered, and that these pathways might be fundamental in the amino acid metabolism of the microbial community from Laguna Negra, Argentina .
Small but Powerful, the Primary Endosymbiont of Moss Bugs, Candidatus Evansia muelleri, Holds a Reduced Genome with Large Biosynthetic Capabilities
International audience; Moss bugs (Coleorrhyncha: Peloridiidae) are members of the order Hemiptera, and like many hemipterans, they have symbiotic associations with intracellular bacteria to fulfill nutritional requirements resulting from their unbalanced diet. The primary endosymbiont of the moss bugs, Candidatus Evansia muelleri, is phylogenetically related to Candidatus Carsonella ruddii and Candidatus Portiera aleyrodidarum, primary endosymbionts of psyllids and whiteflies, respectively. In this work, we report the genome of Candidatus Evansia muelleri Xc1 from Xenophyes cascus, which is the only obligate endosymbiont present in the association. This endosymbiont possesses an extremely …
Detection and Characterization of Wolbachia Infections in Natural Populations of Aphids: Is the Hidden Diversity Fully Unraveled?
Copyright © 2011 Augustinos et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Aphids are a serious threat to agriculture, despite being a rather small group of insects. The about 4,000 species worldwide engage in highly interesting and complex relationships with their microbial fauna. One of the key symbionts in arthropods is Wolbachia, an a-Proteobacterium implicated in many important biological processes and believed to be a potential tool for biological control. Aphids were thought not to harbour W…
No exception to the rule: Candidatus Portiera aleyrodidarum cell wall revisited
International audience; Many insect endosymbionts described so far are gram-negative bacteria. Primary endosymbionts are obligatory bacteria usually harboured by insects inside vacuoles in specialized cells called bacteriocytes. This combination produces a typical three-membrane system with one membrane derived from the insect vacuole and the other two from the bacterial gram-negative cell envelope, composed by the cell wall (the outer membrane plus the periplasmic space) and the plasma membrane (the inner membrane). For the last 21 years, the primary endosymbiont of whiteflies 'Candidatus Portiera aleyrodidarum' was considered an exception to this rule. Previous works stated that only two …
Two Host Clades, Two Bacterial Arsenals: Evolution through Gene Losses in Facultative Endosymbionts.
International audience; Bacterial endosymbiosis is an important evolutionary process in insects, which can harbor both obligate and facultative symbionts. The evolution of these symbionts is driven by evolutionary convergence, and they exhibit among the tiniest genomes in prokaryotes. The large host spectrum of facultative symbionts and the high diversity of strategies they use to infect new hosts probably impact the evolution of their genome and explain why they undergo less severe genomic erosion than obligate symbionts. Candidatus Hamiltonella defensa is suitable for the investigation of the genomic evolution of facultative symbionts because the bacteria are engaged in specific relations…