0000000000686858

AUTHOR

J. M. Carmona

showing 8 related works from this author

NEXT-100 Technical Design Report (TDR). Executive summary

2012

[EN] In this Technical Design Report (TDR) we describe the NEXT-100 detector that will search for neutrinoless double beta decay (ßß0v) in 136XE at the Laboratorio Subterráneo de Canfranc (LSC), in Spain. The document formalizes the design presented in our Conceptual Design Report (CDR): an electroluminescence time projection chamber, with separate readout planes for calorimetry and tracking, located, respectively, behind cathode and anode. The detector is designed to hold a maximum of about 150 kg of xenon at 15 bar, or 100 kg at 10 bar. This option builds in the capability to increase the total isotope mass by 50% while keeping the operating pressure at a manageable level. The readout pla…

MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURASPhotomultiplierPhysics - Instrumentation and DetectorsBar (music)Time projection chambersFOS: Physical scienceschemistry.chemical_elementWavelength shifterTracking (particle physics)7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentTECNOLOGIA ELECTRONICAHigh Energy Physics - Experiment (hep-ex)chemistry.chemical_compoundXenonOptics0103 physical sciences010306 general physicsInstrumentationMathematical PhysicsPhysicsTime projection chamber010308 nuclear & particles physicsbusiness.industryDetectorFísicaTetraphenyl butadieneDetectorsInstrumentation and Detectors (physics.ins-det)Gas detectorsDetectors de gasoschemistryDetector design and construction technologies and materialsbusinessJournal of Instrumentation
researchProduct

SiPMs coated with TPB: coating protocol and characterization for NEXT

2012

[EN] Silicon photomultipliers (SiPM) are the photon detectors chosen for the tracking readout in NEXT, a neutrinoless \bb decay experiment which uses a high pressure gaseous xenon time projection chamber (TPC). The reconstruction of event track and topology in this gaseous detector is a key handle for background rejection. Among the commercially available sensors that can be used for tracking, SiPMs offer important advantages, mainly high gain, ruggedness, cost-effectiveness and radio-purity. Their main drawback, however, is their non sensitivity in the emission spectrum of the xenon scintillation (peak at 175 nm). This is overcome by coating these sensors with the organic wavelength shifte…

Materials sciencePhysics - Instrumentation and DetectorsFOS: Physical scienceschemistry.chemical_elementengineering.materialWavelength shifterTracking (particle physics)7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentTECNOLOGIA ELECTRONICAHigh Energy Physics - Experiment (hep-ex)XenonSilicon photomultiplierCoating0103 physical sciencesSensitivity (control systems)Visible and IR photons (solid-state)010306 general physicsInstrumentationPhoton detectors for UVMathematical PhysicsScintillationTime projection chamber010308 nuclear & particles physicsbusiness.industryTime projection Chambers (TPC)FísicaDetectorsInstrumentation and Detectors (physics.ins-det)Gas detectorsScintillators scintillation and light emission processes (solid gas and liquid scintillators)Detectors de gasoschemistryParticle tracking detectors (Solid-state detectors)engineeringOptoelectronicsbusiness
researchProduct

The Next Generation of Axion Helioscopes: The International Axion Observatory (IAXO)

2015

Çetin, Serkant Ali (Dogus Author) -- Conference full title: 13th International Conference on Topics in Astroparticle and Underground Physics, TAUP 2013; Asilomar Conference Grounds Monterey Peninsula; United States; 8 September 2013 through 13 September 2013. The International Axion Observatory (IAXO) is a proposed 4th-generation axion helioscope with the primary physics research goal to search for solar axions via their Primakoff conversion into photons of 1 - 10 keV energies in a strong magnetic field. IAXO will achieve a sensitivity to the axion-photon coupling gaγ down to a few ×10-12 GeV-1 for a wide range of axion masses up to ∼ 0.25 eV. This is an improvement over the currently best …

QCD axionParticle physicsPhysics::Instrumentation and DetectorsDark matterPhysics and Astronomy(all)01 natural sciences7. Clean energymagnetic helioscopeHigh Energy Physics::TheoryQCD axionsAstroparticle PhysicsAxionObservatory0103 physical sciencesDark matterQCD axions; magnetic helioscope; dark matterDark Matterddc:530Detectors and Experimental Techniques010306 general physicsAxionAstroparticle physicsPhysicsHelioscope010308 nuclear & particles physicsAxion Dark Matter ExperimentHigh Energy Physics::PhenomenologyStrong CP problemIAXOStrong CP ProblemALPStrong CP problemAstroparticle physicsCERN Axion Solar TelescopeParticle Physics - ExperimentHelioscopesPhysics Procedia
researchProduct

Future axion searches with the International Axion Observatory (IAXO)

2013

Çetin, Serkant Ali (Dogus Author) -- Conference full title: 6th Symposium on Large TPCs for Low Energy Rare Event Detection; Paris; France; 17 December 2012 through 19 December 2012. The International Axion Observatory (IAXO) is a new generation axion helioscope aiming at a sensitivity to the axion-photon coupling of gaγ ∼ few × 10-12 GeV-1, i.e. 1-1.5 orders of magnitude beyond the one achieved by CAST, currently the most sensitive axion helioscope. The main elements of IAXO are an increased magnetic field volume together with extensive use of x-ray focusing optics and low background detectors, innovations already successfully tested in CAST. Additional physics cases of IAXO could include …

PhysicsHistoryParticle physicssolar axionOrders of Magnitude010308 nuclear & particles physicsRare event detectionSingle photon detectorsLow Background Detectors01 natural sciencesdark matterWhite DwarfsComputer Science ApplicationsEducationLow energyObservatory0103 physical sciencessolar axions; dark matter; Single photon detectorssolar axionsddc:530X-ray Focusing Optics010306 general physicsAxion
researchProduct

Next Generation Search for Axion and ALP Dark Matter with the International Axion Observatory

2018

International audience; More than 80 years after the postulation of dark matter, its nature remains one of the fundamental questions in cosmology. Axions are currently one of the leading candidates for the hypothetical, non-baryonic dark matter that is expected to account for about 25% of the energy density of the Universe. Especially in the light of the Large Hadron Collider at CERN slowly closing in on Weakly-Interacting Massive Particle (WIMP) searches, axions and axion-like particles (ALPs) provide a viable alternative approach to solving the dark matter problem. The fact that makes them particularly appealing is that they were initially introduced to solve a long-standing problem in qu…

Particle physicsCERN LabPhysics::Instrumentation and DetectorsDark matterObservatoriesaxion: detector7. Clean energy01 natural sciencesCosmologyHigh Energy Physics::TheoryPrimakoff effectSensitivityWIMP0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsAxionPrimakoff effectactivity reportPhysicsHelioscopeLarge Hadron Collider010308 nuclear & particles physicsPhysicsHigh Energy Physics::PhenomenologyToroidal magnetic fieldsDetectorsobservatory13. Climate actionCouplingsaxion-like particlesproposed experimentCERN Axion Solar Telescopeaxion: solarTelescopes
researchProduct

Axion search with BabyIAXO in view of IAXO

2020

Axions are a natural consequence of the Peccei-Quinn mechanism, the most compelling solution to the strong-CP problem. Similar axion-like particles (ALPs) also appear in a number of possible extensions of the Standard Model, notably in string theories. Both axions and ALPs are very well motivated candidates for Dark Matter, and in addition, they would be copiously produced at the sun's core. A relevant effort during the last decade has been the CAST experiment at CERN, the most sensitive axion helioscope to-date. The International Axion Observatory (IAXO) is a large-scale 4th generation helioscope. As its primary physics goal, IAXO will look for solar axions or ALPs with a signal to backgro…

Particle physicsPhysics - Instrumentation and Detectorssolar axion[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]experimental methodsDark matterFOS: Physical sciences7. Clean energyString (physics)Standard Modelaxion helioscopedesign [detector]International Axion Observatory (IAXO)ObservatoryPeccei-Quinn mechanismDark Matterdetector design[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Detectors and Experimental TechniquesAxionsun-tracking systemsphysics.ins-detactivity reportdetector: designPhysicsinstrumentationHelioscopeLarge Hadron Colliderdetectorsolar [axion]DESYInstrumentation and Detectors (physics.ins-det)[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]IAXOmagnetopticsaxion: solar
researchProduct

Conceptual design of the International Axion Observatory (IAXO)

2014

The International Axion Observatory (IAXO) will be a forth generation axion helioscope. As its primary physics goal, IAXO will look for axions or axion-like particles (ALPs) originating in the Sun via the Primakoff conversion of the solar plasma photons. In terms of signal-to-noise ratio, IAXO will be about 4-5 orders of magnitude more sensitive than CAST, currently the most powerful axion helioscope, reaching sensitivity to axion-photon couplings down to a few $\times 10^{-12}$ GeV$^{-1}$ and thus probing a large fraction of the currently unexplored axion and ALP parameter space. IAXO will also be sensitive to solar axions produced by mechanisms mediated by the axion-electron coupling $g_{…

MICROPICPhysics - Instrumentation and DetectorsPhotonaxionsParameter space7. Clean energyHigh Energy Physics - ExperimentDark Matter detectors (WIMPs axions etc.)High Energy Physics - Experiment (hep-ex)Observatoryetc.)Micropattern gaseous detectors (MSGC GEM THGEM RETHGEM MHSP MICROPIC MICROMEGAS InGrid etc)Detectors and Experimental TechniquesInstrumentationMathematical PhysicsPhysicsGEMsolar [axion]Dark Matter Detectors (Wimps Axions etc.)MicroMegas detectorX-ray detectorsInstrumentation and Detectors (physics.ins-det)Dark Matter detectors (WIMPs axions etc.); Large detector systems for particle and astroparticle physics; Micropattern gaseous detectors (MSGC GEM THGEM RETHGEM MHSP MICROPIC MICROMEGAS InGrid etc); X-ray detectors; Instrumentation; Mathematical PhysicssolarobservatoryMICROMEGASMHSPaxion-like particlesproposed experimentaxions ; dark matter detectors ; x-ray detectors ; Micropattern gaseous detectors ; large detector systems for particle and astroparticle physicsMicromegasX-ray detectorParticle physicsoptics [X-ray]FOS: Physical sciencesSuperconducting magnetMicropattern gaseous detectors (MSGCddc:610Axionactivity reportDark Matter detectors (WIMPssuperconductivity [magnet]etc)HelioscopeLarge detector systems for particle and astroparticle physicssensitivityInGridRETHGEMOrders of magnitude (time)axionLarge detector systems for particle and astroparticle physicTHGEMMicropattern Gaseous Detectors (MSGC Gem THGEM Rethgem MHSP Micropic Micromegas In Grid; etc)
researchProduct

IAXO - The International Axion Observatory

2013

The International Axion Observatory (IAXO) is a next generation axion helioscope aiming at a sensitivity to the axion-photon coupling of a few 10^{-12} GeV^{-1}, i.e. 1-1.5 orders of magnitude beyond sensitivities achieved by the currently most sensitive axion helioscope, the CERN Axion Solar Telescope (CAST). Crucial factors in improving the sensitivity for IAXO are the increase of the magnetic field volume together with the extensive use of x-ray focusing optics and low background detectors, innovations already successfully tested at CAST. Electron-coupled axions invoked to explain the white dwarf cooling, relic axions, and a large variety of more generic axion-like particles (ALPs) along…

High Energy Physics::TheoryHigh Energy Physics - Experiment (hep-ex)Physics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsHigh Energy Physics::PhenomenologyFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)Detectors and Experimental TechniquesHigh Energy Physics - Experiment
researchProduct