0000000000687439

AUTHOR

Yishai Levin

Drift time-specific collision energies enable deep-coverage data-independent acquisition proteomics.

A data-independent acquisition (DIA) mass spectrometry approach, ultradefinition (UD)MSE, offers high reproducibility and improved proteome coverage over alternative DIA and data-dependent acquisition workflows. We present a data-independent acquisition mass spectrometry method, ultradefinition (UD) MSE. This approach utilizes ion mobility drift time-specific collision-energy profiles to enhance precursor fragmentation efficiency over current MSE and high-definition (HD) MSE data-independent acquisition techniques. UDMSE provided high reproducibility and substantially improved proteome coverage of the HeLa cell proteome compared to previous implementations of MSE, and it also outperformed a…

research product

"Design and application of a data-independent precursor and product ion repository."

The functional design and application of a data-independent LC-MS precursor and product ion repository for protein identification, quantification, and validation is conceptually described. The ion repository was constructed from the sequence search results of a broad range of discovery experiments investigating various tissue types of two closely related mammalian species. The relative high degree of similarity in protein complement, ion detection, and peptide and protein identification allows for the analysis of normalized precursor and product ion intensity values, as well as standardized retention times, creating a multidimensional/orthogonal queryable, qualitative, and quantitative spac…

research product