0000000000696846

AUTHOR

Mohamed Madjet

Refinement of a structural model of a pigment-protein complex by accurate optical line shape theory and experiments.

Time-local and time-nonlocal theories are used in combination with optical spectroscopy to characterize the water-soluble chlorophyll binding protein complex (WSCP) from cauliflower. The recombinant cauliflower WSCP complexes reconstituted with either chlorophyll b (Chl b) or Chl a/Chl b mixtures are characterized by absorption spectroscopy at 77 and 298 K and circular dichroism at 298 K. On the basis of the analysis of these spectra and spectra reported for recombinant WSCP reconstituted with Chl a only (Hughes, J. L.; Razeghifard, R.; Logue, M.; Oakley, A.; Wydrzynski, T.; Krausz, E. J. Am. Chem. Soc. U.S.A. 2006, 128, 3649), the "open-sandwich" model proposed for the structure of the pig…

research product

Thermally Activated Superradiance and Intersystem Crossing in the Water-Soluble Chlorophyll Binding Protein

The crystal structure of the class IIb water-soluble chlorophyll binding protein (WSCP) from Lepidium virginicum is used to model linear absorption and circular dichroism spectra as well as excited state decay times of class IIa WSCP from cauliflower reconstituted with chlorophyll (Chl) a and Chl b. The close agreement between theory and experiment suggests that both types of WSCP share a common Chl binding motif, where the opening angle between pigment planes in class IIa WSCP should not differ by more than 10 degrees from that in class IIb. The experimentally observed (Schmitt et al. J. Phys. Chem. B 2008, 112, 13951) decrease in excited state lifetime of Chl a homodimers with increasing …

research product