0000000000700017

AUTHOR

Marcel Straub

showing 2 related works from this author

Additional file 1 of Size-isolation of superparamagnetic iron oxide nanoparticles improves MRI, MPI and hyperthermia performance

2020

Additional file 1: Figure S1. Zeta potential analysis of the crude, C1-C5, Resovist® and Sinerem® samples. Figure S2. Cell viability of NIH3T3 cells treated with the samples with various concentrations ofSPION for 4 h according to XTT assay. The data were normalized to control value (SPION-freemedia), which was set as 100% cell viability. Experiments were performed at different concentrationsof SPION in the range of 0.1 to 10.0 mM. Values represent means ± standard deviations of fiveidentical experiments made in three replicates. Figure S3. LDH leakage of NIH3T3 cells treated with the samples with various concentrations ofSPION for 4 h according to the manufacturer’s instructions. Experimen…

researchProduct

Size-isolation of superparamagnetic iron oxide nanoparticles improves MRI, MPI and hyperthermia performance.

2020

Journal of nanobiotechnology 18, 22 (2020). doi:10.1186/s12951-020-0580-1

Hyperthermialcsh:Medical technologyMaterials sciencelcsh:BiotechnologyDispersityBiomedical EngineeringIron oxidePharmaceutical ScienceMedicine (miscellaneous)NanoparticleContrast MediaBioengineering02 engineering and technology010402 general chemistry01 natural sciencesApplied Microbiology and BiotechnologyTheranostic Nanomedicinechemistry.chemical_compoundStructure-Activity RelationshipIron oxide nanoparticlesMagnetic particle imagingDynamic light scatteringlcsh:TP248.13-248.65medicineHumansHyperthermiaParticle SizeMagnetite Nanoparticlesmedicine.diagnostic_testResearchSPIONMagnetic resonance imagingDextransHyperthermia Induced021001 nanoscience & nanotechnologymedicine.diseaseImage EnhancementMagnetic Resonance Imaging0104 chemical scienceslcsh:R855-855.5chemistryMolecular MedicineMPI0210 nano-technologyIron oxide nanoparticlesBiomedical engineeringMRIJournal of nanobiotechnology
researchProduct