0000000000700052
AUTHOR
Julie Vogt
PURA- Related Developmental and Epileptic Encephalopathy: Phenotypic and Genotypic Spectrum
Background and ObjectivesPurine-rich element-binding protein A (PURA) gene encodes Pur-α, a conserved protein essential for normal postnatal brain development. Recently, a PURA syndrome characterized by intellectual disability, hypotonia, epilepsy, and dysmorphic features was suggested. The aim of this study was to define and expand the phenotypic spectrum of PURA syndrome by collecting data, including EEG, from a large cohort of affected patients.MethodsData on unpublished and published cases were collected through the PURA Syndrome Foundation and the literature. Data on clinical, genetic, neuroimaging, and neurophysiologic features were obtained.ResultsA cohort of 142 patients was include…
Missense variants in DPYSL5 cause a neurodevelopmental disorder with corpus callosum agenesis and cerebellar abnormalities
International audience; The collapsin response mediator protein (CRMP) family proteins are intracellular mediators of neurotrophic factors regulating neurite structure/spine formation and are essential for dendrite patterning and directional axonal pathfinding during brain developmental processes. Among this family, CRMP5/DPYSL5 plays a significant role in neuronal migration, axonal guidance, dendrite outgrowth, and synapse formation by interacting with microtubules. Here, we report the identification of missense mutations in DPYSL5 in nine individuals with brain malformations, including corpus callosum agenesis and/or posterior fossa abnormalities, associated with variable degrees of intel…
Expanding the phenotype of ASXL3 ‐related syndrome: A comprehensive description of 45 unpublished individuals with inherited and de novo pathogenic variants in ASXL3
The study aimed at widening the clinical and genetic spectrum of ASXL3-related syndrome, a neurodevelopmental disorder, caused by truncating variants in the ASXL3 gene. In this international collaborative study, we have undertaken a detailed clinical and molecular analysis of 45 previously unpublished individuals with ASXL3-related syndrome, as well as a review of all previously published individuals. We have reviewed the rather limited functional characterization of pathogenic variants in ASXL3 and discuss current understanding of the consequences of the different ASXL3 variants. In this comprehensive analysis of ASXL3-related syndrome, we define its natural history and clinical evolution …
Missense variants in TAF1 and developmental phenotypes: Challenges of determining pathogenicity
We recently described a new neurodevelopmental syndrome (TAF1/MRXS33 intellectual disability syndrome) (MIM# 300966) caused by pathogenic variants involving the X-linked gene TAF1, which participates in RNA polymerase II transcription. The initial study reported eleven families, and the syndrome was defined as presenting early in life with hypotonia, facial dysmorphia, and developmental delay that evolved into intellectual disability (ID) and/or autism spectrum disorder (ASD). We have now identified an additional 27 families through a genotype-first approach. Familial segregation analysis, clinical phenotyping, and bioinformatics were capitalized on to assess potential variant pathogenicity…