Optimization of a laser ion source for $^{163}$Ho isotope separation
To measure the mass of the electron neutrino, the “Electron Capture in Holmium-163” (ECHo) collaboration aims at calorimetrically measuring the spectrum following electron capture in 163Ho. The success of the ECHo experiment depends critically on the radiochemical purity of the 163Ho sample, which is ion-implanted into the calorimeters. For this, a 30 kV high transmission magnetic mass separator equipped with a resonance ionization laser ion source is used. To meet the ECHo requirements, the ion source unit was optimized with respect to its thermal characteristics and material composition by means of the finite element method thermal-electric calculations and chemical equilibrium simulation…