0000000000701150

AUTHOR

Osman M. Bakr

showing 4 related works from this author

State of the art and prospects for halide perovskite nanocrystals

2021

Financiado para publicación en acceso aberto: Universidade de Vigo/CISUG Metal-halide perovskites have rapidly emerged as one of the most promising materials of the 21st century, with many exciting properties and great potential for a broad range of applications, from photovoltaics to optoelectronics and photocatalysis. The ease with which metal-halide perovskites can be synthesized in the form of brightly luminescent colloidal nanocrystals, as well as their tunable and intriguing optical and electronic properties, has attracted researchers from different disciplines of science and technology. In the last few years, there has been a significant progress in the shape-controlled synthesis of …

light-emitting devicesGeneral Physics and AstronomyNanotechnology02 engineering and technology010402 general chemistry01 natural sciences7. Clean energyphotocatalystsmetal-halide perovskite nanocrystalslead-free perovskite nanocrystalsPhotovoltaicsGeneral Materials ScienceNanoscience & NanotechnologyPerovskite (structure)Electronic propertiesPhysicsbusiness.industryPhysicsperovskite nanoplateletsGeneral Engineering021001 nanoscience & nanotechnology0104 chemical sciencesddc:Chemistryphotovoltaicsperovskite nanocubesmetal-halide perovskite nanocrystals; perovskite nanoplatelets; perovskite nanocubes; perovskite nanowires; lead-free perovskite nanocrystals; light-emitting devices; photovoltaics; lasers; photocatalysts; photodetectorsNanocrystalperovskite nanowiresphotodetectors2307 Química Física0210 nano-technologybusinessEngineering sciences. Technologylasers
researchProduct

[Ag67(SPhMe2)32(PPh3)8]3+: Synthesis, Total Structure, and Optical Properties of a Large Box-Shaped Silver Nanocluster

2016

Engineering the surface ligands of metal nanoparticles is critical in designing unique arrangements of metal atoms. Here, we report the synthesis and total structure determination of a large box-shaped Ag67 nanocluster (NC) protected by a mixed shell of thiolate (2,4-dimethylbenzenethiolate, SPhMe2) and phosphine (triphenylphosphine, PPh3) ligands. Single crystal X-ray diffraction (SCXRD) and electrospray ionization mass spectrometry (ESI-MS) revealed the cluster formula to be [Ag67(SPhMe2)32(PPh3)8]3+. The crystal structure shows an Ag23 metal core covered by a layer of Ag44S32P8 arranged in the shape of a box. The Ag23 core was formed through an unprecedented centered cuboctahedron, i.e.,…

surface ligandsnanoclustersmetal nanoparticles
researchProduct

[Ag67(SPhMe2)32(PPh3)8]3+: Synthesis, Total Structure, and Optical Properties of a Large Box-Shaped Silver Nanocluster

2016

Engineering the surface ligands of metal nanoparticles is critical in designing unique arrangements of metal atoms. Here, we report the synthesis and total structure determination of a large box-shaped Ag67 nanocluster (NC) protected by a mixed shell of thiolate (2,4-dimethylbenzenethiolate, SPhMe2) and phosphine (triphenylphosphine, PPh3) ligands. Single crystal X-ray diffraction (SCXRD) and electrospray ionization mass spectrometry (ESI-MS) revealed the cluster formula to be [Ag67(SPhMe2)32(PPh3)8]3+. The crystal structure shows an Ag23 metal core covered by a layer of Ag44S32P8 arranged in the shape of a box. The Ag23 core was formed through an unprecedented centered cuboctahedron, i.e.,…

CuboctahedronElectrospray ionizationnanoclusters02 engineering and technologyElectronic structureCrystal structure010402 general chemistry01 natural sciencesBiochemistryCatalysisMetalchemistry.chemical_compoundColloid and Surface ChemistryTriphenylphosphinemetal nanoparticlesta116ta114ChemistryLigandGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesCrystallographysurface ligandsvisual_artvisual_art.visual_art_medium0210 nano-technologySingle crystalJournal of the American Chemical Society
researchProduct

CCDC 1521591: Experimental Crystal Structure Determination

2016

Related Article: Mohammad J. Alhilaly, Megalamane S. Bootharaju, Chakra P. Joshi, Tabot M. Besong, Abdul-Hamid Emwas, Rosalba Juarez-Mosqueda, Sami Kaappa, Sami Malola, Karim Adil, Aleksander Shkurenko, Hannu Häkkinen, Mohamed Eddaoudi, and Osman M. Bakr|2016|J.Am.Chem.Soc.|138|14727|doi:10.1021/jacs.6b09007

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersdotriacontakis(mu-24-dimethylbenzenethiolato)-octakis(triphenylphosphine)-heptahexaconta-silver tris(tetraphenylborate) unknown solvateExperimental 3D Coordinates
researchProduct