0000000000701365
AUTHOR
Mar Martinez-pastor
Negative feedback regulation of the yeast CTH1 and CTH2 mRNA binding proteins is required for adaptation to iron deficiency and iron supplementation.
Iron (Fe) is an essential element for all eukaryotic organisms because it functions as a cofactor in a wide range of biochemical processes. Cells have developed sophisticated mechanisms to tightly control Fe utilization in response to alterations in cellular demands and bioavailability. In response to Fe deficiency, the yeast Saccharomyces cerevisiae activates transcription of the CTH1 and CTH2 genes, which encode proteins that bind to AU-rich elements (AREs) within the 3′ untranslated regions (3′UTRs) of many mRNAs, leading to metabolic reprogramming of Fe-dependent pathways and decreased Fe storage. The precise mechanisms underlying Cth1 and Cth2 function and regulation are incompletely u…
Phosphorylation and proteasome recognition of the mRNA- binding protein Cth2 facilitates yeast adaptation to iron deficiency
Iron is an indispensable micronutrient for all eukaryotic organisms due to its participation as a redox cofactor in many metabolic pathways. Iron imbalance leads to the most frequent human nutritional deficiency in the world. Adaptation to iron limitation requires a global reorganization of the cellular metabolism directed to prioritize iron utilization for essential processes. In response to iron scarcity, the conserved Saccharomyces cerevisiae mRNA-binding protein Cth2, which belongs to the tristetraprolin family of tandem zinc finger proteins, coordinates a global remodeling of the cellular metabolism by promoting the degradation of multiple mRNAs encoding highly iron-consuming proteins.…