0000000000702040

AUTHOR

Felix N. Tomilin

Structure‐ and Interaction‐Based Design of Anti‐SARS‐CoV‐2 Aptamers

Aptamer selection against novel infections is a complicated and time-consuming approach. Synergy can be achieved by using computational methods together with experimental procedures. This study aims to develop a reliable methodology for a rational aptamer in silico et vitro design. The new approach combines multiple steps: (1) Molecular design, based on screening in a DNA aptamer library and directed mutagenesis to fit the protein tertiary structure; (2) 3D molecular modeling of the target; (3) Molecular docking of an aptamer with the protein; (4) Molecular dynamics (MD) simulations of the complexes; (5) Quantum-mechanical (QM) evaluation of the interactions between aptamer and target with …

research product

The Role of Small-Angle X-Ray Scattering and Molecular Simulations in 3D Structure Elucidation of a DNA Aptamer Against Lung Cancer

Aptamers are short, single-stranded DNA or RNA oligonucleotide molecules that function as synthetic analogs of antibodies and bind to a target molecule with high specificity. Aptamer affinity entirely depends on its tertiary structure and charge distribution. Therefore, length and structure optimization are essential for increasing aptamer specificity and affinity. Here we present a general optimization procedure for finding most populated atomistic structures of DNA aptamers. Based on the existed aptamer LC-18 for lung adenocarcinoma, a new truncated aptamer LC-18t was developed. A three-dimensional shape of LC-18t was reported based on small-angle X-ray scattering (SAXS) experiments and m…

research product

Development of DNA aptamers for visualization of glial brain tumors and detection of circulating tumor cells

Here, we present DNA aptamers capable of specific binding to glial tumor cells in vitro, ex vivo, and in vivo for visualization diagnostics of central nervous system tumors. We selected the aptamers binding specifically to the postoperative human glial primary tumors and not to the healthy brain cells and meningioma, using a modified process of systematic evolution of ligands by exponential enrichment to cells; sequenced and analyzed ssDNA pools using bioinformatic tools and identified the best aptamers by their binding abilities; determined three-dimensional structures of lead aptamers (Gli-55 and Gli-233) with small-angle X-ray scattering and molecular modeling; isolated and identified mo…

research product

The role of SAXS and molecular simulations in 3D structure elucidation of a DNA aptamer against lung cancer

Aptamers are short, single-stranded DNA or RNA oligonucleotide molecules that function as synthetic analogs of antibodies and bind to a target molecule with high specificity. Aptamer affinity entirely depends on its tertiary structure and charge distribution. Therefore, length and structure optimization are essential for increasing aptamer specificity and affinity. Here, we present a general optimization procedure for finding the most populated atomistic structures of DNA aptamers. Based on the existed aptamer LC-18 for lung adenocarcinoma, a new truncated LC-18 (LC-18t) aptamer LC-18t was developed. A three-dimensional (3D) shape of LC-18t was reported based on small-angle X-ray scattering…

research product