0000000000705724

AUTHOR

Maarten A. Brems

showing 6 related works from this author

Circuits and excitations to enable Brownian token-based computing with skyrmions

2021

Brownian computing exploits thermal motion of discrete signal carriers (tokens) for computations. In this paper we address two major challenges that hinder competitive realizations of circuits and application of Brownian token-based computing in actual devices for instance based on magnetic skyrmions. To overcome the problem that crossings generate for the fabrication of circuits, we design a crossing-free layout for a composite half-adder module. This layout greatly simplifies experimental implementations as wire crossings are effectively avoided. Additionally, our design is shorter to speed up computations compared to conventional designs. To address the key issue of slow computation base…

SpeedupCondensed Matter - Mesoscale and Nanoscale PhysicsPhysics and Astronomy (miscellaneous)Computer science530 PhysicsComputationFOS: Physical sciencesTopologySecurity token530 PhysikPower (physics)Discrete-time signalMesoscale and Nanoscale Physics (cond-mat.mes-hall)TorqueBrownian motionElectronic circuit
researchProduct

Skyrmion pinning energetics in thin film systems

2022

AbstractA key issue for skyrmion dynamics and devices are pinning effects present in real systems. While posing a challenge for the realization of conventional skyrmionics devices, exploiting pinning effects can enable non-conventional computing approaches if the details of the pinning in real samples are quantified and understood. We demonstrate that using thermal skyrmion dynamics, we can characterize the pinning of a sample and we ascertain the spatially resolved energy landscape. To understand the mechanism of the pinning, we probe the strong skyrmion size and shape dependence of the pinning. Magnetic microscopy imaging demonstrates that in contrast to findings in previous investigation…

Condensed Matter - Materials ScienceMultidisciplinaryroom-temperatureCondensed Matter - Mesoscale and Nanoscale Physics530 PhysicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and AstronomyGeneral ChemistrydynamicsPhysik (inkl. Astronomie)530 PhysikCondensed Matter::Mesoscopic Systems and Quantum Hall EffectGeneral Biochemistry Genetics and Molecular BiologymotionCondensed Matter::SuperconductivityMesoscale and Nanoscale Physics (cond-mat.mes-hall)Hardware_INTEGRATEDCIRCUITS
researchProduct

Brownian reservoir computing realized using geometrically confined skyrmion dynamics

2022

AbstractReservoir computing (RC) has been considered as one of the key computational principles beyond von-Neumann computing. Magnetic skyrmions, topological particle-like spin textures in magnetic films are particularly promising for implementing RC, since they respond strongly nonlinearly to external stimuli and feature inherent multiscale dynamics. However, despite several theoretical proposals that exist for skyrmion reservoir computing, experimental realizations have been elusive until now. Here, we propose and experimentally demonstrate a conceptually new approach to skyrmion RC that leverages the thermally activated diffusive motion of skyrmions. By confining the electrically gated a…

Condensed Matter - Materials ScienceUltrafast Spectroscopy of Correlated MaterialsMultidisciplinary530 PhysicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and AstronomyGeneral ChemistryCondensed Matter::Mesoscopic Systems and Quantum Hall Effect530 PhysikGeneral Biochemistry Genetics and Molecular Biology
researchProduct

Commensurability between Element Symmetry and the Number of Skyrmions Governing Skyrmion Diffusion in Confined Geometries

2020

Magnetic skyrmions are topological magnetic structures, which exhibit quasi-particle properties and can show enhanced stability against perturbation from thermal noise. Recently, thermal Brownian diffusion of these quasi-particles has been found in continuous films and applications in unconventional computing have received significant attention, which however require structured elements. Thus, as the next necessary step, we here study skyrmion diffusion in confined geometries and find it to be qualitatively different: The diffusion is governed by the interplay between the total number of skyrmions and the structure geometry. In particular, we ascertain the effect of circular and triangular …

Condensed Matter - Materials ScienceMaterials scienceCondensed matter physics530 PhysicsSkyrmionPerturbation (astronomy)Materials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technologyMagnetic skyrmion010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics530 Physik01 natural sciencesCommensurability (mathematics)Symmetry (physics)0104 chemical sciencesElectronic Optical and Magnetic MaterialsBiomaterialsThermalElectrochemistryDiffusion (business)0210 nano-technologyBrownian motionAdvanced Functional Materials
researchProduct

Coarse-graining collective skyrmion dynamics in confined geometries

2023

Magnetic skyrmions are magnetic quasi-particles with enhanced stability and different manipulation mechanisms using external fields and currents making them promising candidates for future applications for instance in neuromorphic computing. Recently, several measurements and simulations have shown that thermally activated skyrmions in confined geometries, as they are necessary for device applications, arrange themselves predominantly based on commensurability effects. In this simulational study, based on the Thiele model, we investigate the enhanced dynamics and degenerate non-equilibrium steady state of a system in which the intrinsic skyrmion-skyrmion and skyrmion-boundary interaction co…

Condensed Matter - Materials ScienceMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences
researchProduct

Perspective on unconventional computing using magnetic skyrmions

2023

Learning and pattern recognition inevitably requires memory of previous events, a feature that conventional CMOS hardware needs to artificially simulate. Dynamical systems naturally provide the memory, complexity, and nonlinearity needed for a plethora of different unconventional computing approaches. In this perspective article, we focus on the unconventional computing concept of reservoir computing and provide an overview of key physical reservoir works reported. We focus on the promising platform of magnetic structures and, in particular, skyrmions, which potentially allow for low-power applications. Moreover, we discuss skyrmion-based implementations of Brownian computing, which has rec…

FOS: Computer and information sciencesEmerging Technologies (cs.ET)Condensed Matter - Mesoscale and Nanoscale PhysicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)FOS: Physical sciencesComputer Science - Emerging Technologies
researchProduct