0000000000707152

AUTHOR

Matthew T. Mayer

0000-0001-5379-2775

showing 2 related works from this author

Stabilizing organic photocathodes by low-temperature atomic layer deposition of TiO2

2017

Organic semiconductor light absorbers are receiving attention for their potential application in photoelectrochemical (PEC) cells for renewable fuels generation. Key to their advancement is precise control of the interfaces between charge-selective contacts, absorber layers, and electrocatalysts, while maintaining compatibility with an aqueous electrolyte environment. Here we demonstrate a new process for low-temperature atomic layer deposition (ALD) of TiO2 onto a P3HT:PCBM polymer blend surface for stable high-performance organic PEC photocathodes. This ALD TiO2 layer provides three key functions: (1) formation of an electron-selective contact to the polymer to enable photovoltage and pho…

Materials scienceta221Energy Engineering and Power TechnologyNanotechnology02 engineering and technologyAqueous electrolyte010402 general chemistryElectrocatalyst01 natural sciences7. Clean energyCorrosionAtomic layer depositionta216Photocurrentchemistry.chemical_classificationta114organic photocathodesRenewable Energy Sustainability and the EnvironmentPolymer021001 nanoscience & nanotechnology0104 chemical sciencesOrganic semiconductorFuel TechnologychemistryOthersatomic layersPolymer blend0210 nano-technologySustainable Energy Fuels
researchProduct

Low-Temperature Atomic Layer Deposition of Crystalline and Photoactive Ultrathin Hematite Films for Solar Water Splitting

2015

We developed a low-temperature atomic layer deposition route to deposit phase pure and crystalline hematite (alpha-Fe2O3) films at 230 degrees C without the need for postannealing. Homogenous and conformal deposition with good aspect ratio coverage was demonstrated on a nanostructured substrate and analyzed by transmission electron microscopy. These as-deposited alpha-Fe2O3 films were investigated as photoanodes for photoelectrochemical water oxidation and found to be highly photoactive. Combined with a TiO2 underlayer and a low-cost Ni(OH)(2) catalyst, hematite films of less than 10 nm in thickness reached photocurrent densities of 0.3 mA cm(-2) at 1.23 V vs RHE and a photocurrent onset po…

PhotocurrentMaterials scienceta114Annealing (metallurgy)underlayerDopingGeneral Engineeringphotoactive thin filmsGeneral Physics and AstronomyNanotechnologyHematitehematiteCatalysisAtomic layer depositionChemical engineeringTransmission electron microscopyvisual_artatomic layer depositionvisual_art.visual_art_mediumGeneral Materials ScienceQuantum efficiencyphotoelectrochemical water oxidationACS Nano
researchProduct