0000000000710157

AUTHOR

Kay Yakushiji

0000-0002-1616-1613

Scaling up electrically synchronized spin torque oscillator networks

AbstractSynchronized nonlinear oscillators networks are at the core of numerous families of applications including phased array wave generators and neuromorphic pattern matching systems. In these devices, stable synchronization between large numbers of nanoscale oscillators is a key issue that remains to be demonstrated. Here, we show experimentally that synchronized spin-torque oscillator networks can be scaled up. By increasing the number of synchronized oscillators up to eight, we obtain that the emitted power and the quality factor increase linearly with the number of oscillators. Even more importantly, we demonstrate that the stability of synchronization in time exceeds 1.6 millisecond…

research product

Enhanced perpendicular magnetocrystalline anisotropy energy in an artificial magnetic material with bulk spin-momentum coupling

We systematically investigate the perpendicular magnetocrystalline anisotropy (MCA) in $\mathrm{Co}\ensuremath{-}\mathrm{Pt}/\mathrm{Pd}$-based multilayers. Our magnetic measurement data show that the asymmetric Co/Pd/Pt multilayer has a significantly larger perpendicular magnetic anisotropy (PMA) energy compared to the symmetric Co/Pt and Co/Pd multilayer samples. We further support this experiment by first-principles calculations on ${\mathrm{CoPt}}_{2}, {\mathrm{CoPd}}_{2}$, and CoPtPd, which are composite bulk materials that consist of three atomic layers in a unit cell, Pt/Co/Pt, Pd/Co/Pd, and Pt/Co/Pd, respectively. By estimating the contribution of bulk spin-momentum coupling to the …

research product