How Does the Relaxation of a Supercooled Liquid Depend on Its Microscopic Dynamics?
Using molecular dynamics computer simulations we investigate how the relaxation dynamics of a simple supercooled liquid with Newtonian dynamics differs from the one with a stochastic dynamics. We find that, apart from the early beta-relaxation regime, the two dynamics give rise to the same relaxation behavior. The increase of the relaxation times of the system upon cooling, the details of the alpha-relaxation, as well as the wave vector dependence of the Edwards-Anderson-parameters are independent of the microscopic dynamics.