0000000000711594
AUTHOR
J. Cabrera-caño
High redshift galaxies in the ALHAMBRA survey
International audience
The ALHAMBRA survey: An empirical estimation of the cosmic variance for merger fraction studies based on close pairs
[Aims]: Our goal is to estimate empirically the cosmic variance that affects merger fraction studies based on close pairs for the first time. [Methods]: We compute the merger fraction from photometric redshift close pairs with 10 h−1 kpc ≤ rp ≤ 50 h−1 kpc and Δv ≤ 500 km s−1 and measure it in the 48 sub-fields of the ALHAMBRA survey. We study the distribution of the measured merger fractions that follow a log-normal function and estimate the cosmic variance σv as the intrinsic dispersion of the observed distribution. We develop a maximum likelihood estimator to measure a reliable σv and avoid the dispersion due to the observational errors (including the Poisson shot noise term). [Results]: …
The ALHAMBRA Project: A large area multi medium-band optical and NIR photometric survey
(ABRIDGED) We describe the first results of the ALHAMBRA survey which provides cosmic tomography of the evolution of the contents of the Universe over most of Cosmic history. Our approach employs 20 contiguous, equal-width, medium-band filters covering from 3500 to 9700 A, plus the JHKs bands, to observe an area of 4 sqdeg on the sky. The optical photometric system has been designed to maximize the number of objects with accurate classification by SED and redshift, and to be sensitive to relatively faint emission lines. The observations are being carried out with the Calar Alto 3.5m telescope using the cameras LAICA and O-2000. The first data confirm that we are reaching the expected magnit…
The ALHAMBRA survey: Accurate merger fractions by PDF analysis of photometric close pairs
Our goal is to develop and test a novel methodology to compute accurate close pair fractions with photometric redshifts. We improve the current methodologies to estimate the merger fraction f_m from photometric redshifts by (i) using the full probability distribution functions (PDFs) of the sources in redshift space, (ii) including the variation in the luminosity of the sources with z in both the selection of the samples and in the luminosity ratio constrain, and (iii) splitting individual PDFs into red and blue spectral templates to deal robustly with colour selections. We test the performance of our new methodology with the PDFs provided by the ALHAMBRA photometric survey. The merger frac…