0000000000711799
AUTHOR
Peng-peng Ruan
Solubility-Driven Isolation of a Metastable Nonagold Cluster with Body-Centered Cubic Structure.
The conventional synthetic methodology of atomically precise gold nanoclusters using reduction in solutions offers only thermodynamically most stable nanoclusters. We report herein a solubility‐driven isolation strategy to access the synthesis of a metastable gold cluster. The cluster, with the composition of [Au 9 (PPh 3 ) 8 ] + ( 1 ), displays an unusual, nearly perfect body‐centered‐cubic (bcc) structure. As revealed by ESI‐MS and UV/Vis measurement, the cluster is metastable in solution and converts to the well‐known [Au 11 (PPh 3 ) 8 Cl 2 ] + ( 2 ) within just 90 min. DFT calculations revealed that while both 1 and 2 are eight‐electron superatoms, there is a driving force to convert 1 …
Solvent-mediated assembly of atom-precise gold–silver nanoclusters to semiconducting one-dimensional materials
Bottom-up design of functional device components based on nanometer-sized building blocks relies on accurate control of their self-assembly behavior. Atom-precise metal nanoclusters are well-characterizable building blocks for designing tunable nanomaterials, but it has been challenging to achieve directed assembly to macroscopic functional cluster-based materials with highly anisotropic properties. Here, we discover a solvent-mediated assembly of 34-atom intermetallic gold–silver clusters protected by 20 1-ethynyladamantanes into 1D polymers with Ag–Au–Ag bonds between neighboring clusters as shown directly by the atomic structure from single-crystal X-ray diffraction analysis. Density fun…