0000000000713976
AUTHOR
Werner Vogel
Cavity QED with a trapped ion in a leaky cavity
The dynamics of the interaction of a quantized cavity field and the vibronic degrees of freedom of a trapped ion is studied under realistic conditions by including cavity losses, spontaneous electronic transitions, and atomic nonlinearities. As long as spontaneous electronic transitions are negligible, analytical results are derived for describing the interaction of the trapped ion and the damped cavity field in the secular approximation. Under more general conditions, when the secular approximation breaks down and spontaneous emission effects become important, the dynamics of the system is studied by quantum-trajectory methods. As an example we demonstrate that, by exploiting the nonlinear…
Dynamics of a single trapped ion in an optical underdamped cavity
The dynamics of a single trapped ion placed inside a high Q optical cavity is studied in presence of cavity losses and far from the Lamb-Dicke regime. In the underdamped cavity limit, analytical results for describing the dynamics of the system are derived making use of the secular approximation. Our method allows to obtain analytical expressions for the time evolution of the joint vibration-photon number distribution and for the occupation probability of the upper electronic state of the ion.