Differentiation between acute and chronic myocardial infarction by means of texture analysis of late gadolinium enhancement and cine cardiac magnetic resonance imaging
[EN] The purpose of this study was to differentiate acute from chronic myocardial infarction using machine learning techniques and texture features extracted from cardiac magnetic resonance imaging (MRI). The study group comprised 22 cases with acute myocardial infarction (AMI) and 22 cases with chronic myocardial infarction (CMI). Cine and late gadolinium enhancement (LGE) MRI were analyzed independently to differentiate AMI from CMI. A total of 279 texture features were extracted from predefined regions of interest (ROIs): the infarcted area on LGE MRI, and the entire myocardium on cine MRI. Classification performance was evaluated by a nested cross-validation approach combining a feature…