Deciphering genomic heterogeneity and the internal composition of tumour activities through a hierarchical factorisation model
Genomic heterogeneity constitutes one of the most distinctive features of cancer diseases, limiting the efficacy and availability of medical treatments. Tumorigenesis emerges as a strongly stochastic process, producing a variable landscape of genomic configurations. In this context, matrix factorisation techniques represent a suitable approach for modelling such complex patterns of variability. In this work, we present a hierarchical factorisation model conceived from a systems biology point of view. The model integrates the topology of molecular pathways, allowing to simultaneously factorise genes and pathways activity matrices. The protocol was evaluated by using simulations, showing a hi…
Reference genome assessment from a population scale perspective: an accurate profile of variability and noise.
Abstract Motivation Current plant and animal genomic studies are often based on newly assembled genomes that have not been properly consolidated. In this scenario, misassembled regions can easily lead to false-positive findings. Despite quality control scores are included within genotyping protocols, they are usually employed to evaluate individual sample quality rather than reference sequence reliability. We propose a statistical model that combines quality control scores across samples in order to detect incongruent patterns at every genomic region. Our model is inherently robust since common artifact signals are expected to be shared between independent samples over misassembled regions …