0000000000714508

AUTHOR

Stéphane Canu

A new multimodal RGB and polarimetric image dataset for road scenes analysis

International audience; Road scene analysis is a fundamental task for both autonomous vehicles and ADAS systems. Nowadays, one can find autonomous vehicles that are able to properly detect objects present in the scene in good weather conditions but some improvements are left to be done when the visibility is altered. People claim that using some non conventional sensors (infra-red, Lidar, etc.) along with classical vision enhances road scene analysis but still when conditions are optimal. In this work, we present the improvements achieved using polarimetric imaging in the complex situation of adverse weather conditions. This rich modality is known for its ability to describe an object not o…

research product

Multimodal Polarimetric And Color Fusion For Road Scene Analysis In Adverse Weather Conditions

research product

The PolarLITIS Dataset: Road Scenes Under Fog

Road scene analysis is a fundamental task for both autonomous vehicles and ADAS systems. Nowadays, one can find autonomous vehicles that are able to properly detect objects in the scene in good weather conditions; however, some improvements still need to be done when the visibility is altered. People claim that using some non-conventional sensors such as, infra-red or Lidar, combined with classical vision, enhances road scene analysis in optimal weather conditions. In this work, we present the improvements achieved using polarimetric imaging in the complex situation of some adverse weather conditions. This rich modality is known for its ability to describe an object not only by its intensit…

research product

Road scenes analysis in adverse weather conditions by polarization-encoded images and adapted deep learning

International audience; Object detection in road scenes is necessary to develop both autonomous vehicles and driving assistance systems. Even if deep neural networks for recognition task have shown great performances using conventional images, they fail to detect objects in road scenes in complex acquisition situations. In contrast, polarization images, characterizing the light wave, can robustly describe important physical properties of the object even under poor illumination or strong reflections. This paper shows how non-conventional polarimetric imaging modality overcomes the classical methods for object detection especially in adverse weather conditions. The efficiency of the proposed …

research product