0000000000718009

AUTHOR

Weiqiang Wen

Optical measurement of the longitudinal ion distribution of bunched ion beams in the ESR

Abstract An optical technique to study the longitudinal distribution of ions in a bunched ion beam circulating in a storage ring is presented. It is based on the arrival-time analysis of photons emitted after collisional excitation of residual gas molecules. The beam-induced fluorescence was investigated in the ultraviolet regime with a channeltron and in the visible region using a photomultiplier tube. Both were applied to investigate the longitudinal shape of bunched and electron-cooled 209Bi80+ ion beams at about 400 MeV/u in the experimental storage ring (ESR) at GSI Helmholtzzentrum fur Schwerionenforschung in Darmstadt, Germany. Bunch lengths were determined with an uncertainty of abo…

research product

Observation of the hyperfine transition in lithium-like bismuthBi20980+: Towards a test of QED in strong magnetic fields

We performed a laser spectroscopic determination of the $2s$ hyperfine splitting (HFS) of Li-like ${}^{209}{\text{Bi}}^{80+}$ and repeated the measurement of the $1s$ HFS of H-like ${}^{209}{\text{Bi}}^{82+}$. Both ion species were subsequently stored in the Experimental Storage Ring at the GSI Helmholtzzentrum f\"ur Schwerionenforschung Darmstadt and cooled with an electron cooler at a velocity of $\ensuremath{\approx}0.71\phantom{\rule{0.16em}{0ex}}c$. Pulsed laser excitation of the $M1$ hyperfine transition was performed in anticollinear and collinear geometry for ${\text{Bi}}^{82+}$ and ${\text{Bi}}^{80+}$, respectively, and observed by fluorescence detection. We obtain $\ensuremath{\De…

research product

Laser spectroscopy measurement of the 2s-hyperfine splitting in lithium-like bismuth

We have recently reported on the first direct measurement of the $2s$ hyperfine transition in lithium-like bismuth (209Bi80+) at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany. Combined with a new measurement of the $1s$ hyperfine splitting (HFS) in hydrogen-like (209Bi82+) the so-called specific difference ${\rm{\Delta }}^{\prime} E=-61.37(36)$ meV could be determined and was found to be in good agreement with its prediction from strong-field bound-state quantum electrodynamics. Here we report on additional investigations performed to estimate systematic uncertainties of these results and on details of the experimental setup. We show that the dominating uncertainty a…

research product

First observation of the ground-state hyperfine transition in 209Bi80+

The long sought after ground-state hyperfine transition in lithium-like bismuth 209Bi80+ was observed for the first time using laser spectroscopy on relativistic ions in the experimental storage ring at the GSI Helmholtz Centre in Darmstadt. Combined with the transition in the corresponding hydrogen-like ion 209Bi82+, it will allow extraction of the specific difference between the two transitions that is unaffected by the magnetic moment distribution in the nucleus and can therefore provide a better test of bound-state QED in extremely strong magnetic fields.

research product

Laser cooling of stored relativistic ion beams with large momentum spreads using a laser system with a wide scanning range

New results on laser cooling of stored, bunched, relativistic ion beams are presented. For the first time it has been possible to cool an ion beam with large momentum spread without initial electron cooling or scanning of the bunching frequency by using a single cw laser system.

research product

Laser cooling of relativistic heavy-ion beams for FAIR

Laser cooling is a powerful technique to reduce the longitudinal momentum spread of stored relativistic ion beams. Based on successful experiments at the experimental storage ring at GSI in Darmstadt, of which we show some important results in this paper, we present our plans for laser cooling of relativistic ion beams in the future heavy-ion synchrotron SIS100 at the Facility for Antiproton and Ion Research in Darmstadt.

research product