0000000000718651

AUTHOR

Isabel Matias

Fatty acid amide hydrolase controls mouse intestinal motility in vivo.

Background & Aims: Fatty acid amide hydrolase (FAAH) catalyzes the hydrolysis both of the endocannabinoids (which are known to inhibit intestinal motility) and other bioactive amides (palmitoylethanolamide, oleamide, and oleoylethanolamide), which might affect intestinal motility. The physiologic role of FAAH in the gut is largely unexplored. In the present study, we evaluated the possible role of FAAH in regulating intestinal motility in mice in vivo. Methods: Motility was measured by evaluating the distribution of a fluorescent marker along the small intestine; FAAH messenger RNA (mRNA) levels were analyzed by reverse-transcription polymerase chain reaction (RT-PCR); endocannabinoid level…

research product

Mitochondrial CB1 receptors regulate neuronal energy metabolism

The mammalian brain is one of the organs with the highest energy demands, and mitochondria are key determinants of its functions. Here we show that the type-1 cannabinoid receptor (CB(1)) is present at the membranes of mouse neuronal mitochondria (mtCB(1)), where it directly controls cellular respiration and energy production. Through activation of mtCB(1) receptors, exogenous cannabinoids and in situ endocannabinoids decreased cyclic AMP concentration, protein kinase A activity, complex I enzymatic activity and respiration in neuronal mitochondria. In addition, intracellular CB(1) receptors and mitochondrial mechanisms contributed to endocannabinoid-dependent depolarization-induced suppres…

research product