0000000000718782

AUTHOR

Ghislain Grégoire

showing 3 related works from this author

Absolute momentum calibration of the HARP TPC

2008

In the HARP experiment the large-angle spectrometer is using a cylindrical TPC as main tracking and particle identification detector. The momentum scale of reconstructed tracks in the TPC is the most important systematic error for the majority of kinematic bins used for the HARP measurements of the double-differential production cross-section of charged pions in proton interactions on nuclear targets at large angle. The HARP TPC operated with a number of hardware shortfalls and operational mistakes. Thus it was important to control and characterize its momentum calibration. While it was not possible to enter a direct particle beam into the sensitive volume of the TPC to calibrate the detect…

Physics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsTime projection chambersFOS: Physical sciencesDetector alignment and calibration methods (laserssources particle-beams)ddc:500.2Tracking (particle physics)01 natural sciencesParticle detectorParticle identificationNuclear physics0103 physical sciencesCalibration[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Detector alignment and calibration methodsDetectors and Experimental Techniques010306 general physicsNuclear ExperimentInstrumentationMathematical PhysicsHARPPhysicsMomentum (technical analysis)Spectrometer010308 nuclear & particles physicsDetectorSettore FIS/01 - Fisica SperimentaleFísicaInstrumentation and Detectors (physics.ins-det)Settore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)
researchProduct

Measurements of forward proton production with incident protons and charged pions on nuclear targets at the CERN Proton Synchroton

2010

Measurements of the double-differential proton production cross-section d(2 sigma)/dpd Omega in the range of momentum 0.5 GeV/c <= p < 8.0 GeV/c and angle 0.05 rad <= theta < 0.25 rad in collisions of charged pions and protons on beryllium, carbon, aluminium, copper, tin, tantalum, and lead are presented. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN Proton Synchrotron. Incident particles were identified by an elaborate system of beam detectors and impinged on a target of 5% of a nuclear interaction length. The tracking and identification of the produced particles was performed using the forward spectrometer of the HARP experiment. Results are o…

Nuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Physics::Instrumentation and Detectorsproton; nuclear targets; charged pionsFOS: Physical sciencesddc:500.201 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Basic research0103 physical sciencesCERN[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsNuclear ExperimentInelastic proton scatteringPhysicsLarge Hadron Collider010308 nuclear & particles physicsOther reactions above meson production thresholds[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]FísicaPion-induced reactionsnuclear targetsResearch councilcharged pionsnuclear targetPhysics::Accelerator PhysicsHARP ExperimentHigh Energy Physics::ExperimentHumanitiesHARP Experiment; CERNParticle Physics - Experimentproton
researchProduct

Measurement of the production cross-section of positive pions in the collision of 8.9 GeV/c protons on beryllium

2007

The double-differential production cross-section of positive pions, $d^2\sigma^{\pi^{+}}/dpd\Omega$, measured in the HARP experiment is presented. The incident particles are 8.9 GeV/c protons directed onto a beryllium target with a nominal thickness of 5% of a nuclear interaction length. The measured cross-section has a direct impact on the prediction of neutrino fluxes for the MiniBooNE and SciBooNE experiments at Fermilab. After cuts, 13 million protons on target produced about 96,000 reconstructed secondary tracks which were used in this analysis. Cross-section results are presented in the kinematic range 0.75 GeV/c < $p_{\pi}$ < 6.5 GeV/c and 30 mrad < $\theta_{\pi}$ < 210 mrad in the l…

Nuclear reactionParticle physics[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Physics and Astronomy (miscellaneous)HadronFOS: Physical scienceschemistry.chemical_elementddc:500.201 natural sciences7. Clean energyHigh Energy Physics - ExperimentNuclear physicsMiniBooNEHigh Energy Physics - Experiment (hep-ex)Pion0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Fermilab010306 general physicsNuclear ExperimentEngineering (miscellaneous)PhysicsTime projection chamber010308 nuclear & particles physicsSettore FIS/01 - Fisica Sperimentalecross section particle physicsFísica[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]chemistryHigh Energy Physics::ExperimentBerylliumNeutrinoParticle Physics - Experiment
researchProduct