0000000000724571
AUTHOR
M. Emmel
Structural characterization and anomalous Hall effect of Rh2MnGe thin films
Abstract We present the preparation, structural investigations, and transport properties of L21-ordered epitaxial Rh2MnGe Heusler thin films grown by pulsed laser deposition. The films grow (1 0 0) oriented on (1 0 0)MgO substrate with [ 0 1 1 ] Rh 2 MnGe ∥ [ 0 1 0 ] MgO . The rocking curve widths of (4 0 0) reflections are below 1° and decrease with increasing deposition temperature. The flat surface of the thin films allowed lithographic patterning enabling quantitative magnetotransport measurements. We measured resistivity and the Hall effect. We suggest skew scattering as the dominant effect in the temperature dependent anomalous Hall effect, consistent with the theoretically expected s…
Exchange coupling in the correlated electronic states of amorphous GdFe films
The bulk sensitivity of hard x-ray photoelectron spectroscopy in combination with circularly polarized radiation of the P09 beamline at PETRA III enables the investigation of the magnetic properties of capped films. We have determined the temperature dependence of the magnetic circular dichroism in the Fe 2$p$ and in the Gd 3$d$ states in amorphous GdFe films. The magnetic dichroism reflects the stronger temperature dependence of Gd moments compared to Fe moments in agreement with mean-field models. We resolved the exchange split Gd 3${d}_{5/2}$ substates and found a significant temperature dependence of the splitting which is attributed to a temperature dependent part of the exchange energ…
Magnetic states in low-pinning high-anisotropy material nanostructures suitable for dynamic imaging
We present magnetic domain states in a material configuration with high (perpendicular) magnetic anisotropy and particularly low magnetic pinning. This material, a B-doped Co/Pt multilayer configuration, exhibits a strong magnetic contrast in x-ray transmission experiments, making it apt for dynamic imaging with modern synchrotron techniques, providing high spatial and high temporal resolution simultaneously. By analyzing the static spin structures in nanodisks at variable external fields, we show that CoB/Pt multilayers exhibit low enough domain wall pinning to manipulate the domain pattern with weak stimuli and in particular to move domains and domain walls. We demonstrate in a proof-of-p…