0000000000724702

AUTHOR

Ming W. Shi

showing 8 related works from this author

Approaching an experimental electron density model of the biologically active trans ‐epoxysuccinyl amide group—Substituent effects vs. crystal packing

2017

The trans-epoxysuccinyl amide group as a biologically active moiety in cysteine protease inhibitors such as loxistatin acid E64c has been used as a benchmark system for theoretical studies of environmental effects on the electron density of small active ingredients in relation to their biological activity. Here, the synthesis and the electronic properties of the smallest possible active site model compound are reported to close the gap between the unknown experimental electron density of trans-epoxysuccinyl amides and the well-known function of related drugs. Intramolecular substituent effects are separated from intermolecular crystal packing effects on the electron density, which allows us…

chemistry.chemical_classificationElectron densitybiology010405 organic chemistryChemistryCarboxylic acidOrganic ChemistryIntermolecular forceSubstituentActive siteContext (language use)010402 general chemistry01 natural sciences0104 chemical sciencesCrystallographychemistry.chemical_compoundAmideIntramolecular forcebiology.proteinPhysical and Theoretical ChemistryJournal of Physical Organic Chemistry
researchProduct

Electrostatic complementarity in pseudoreceptor modeling based on drug molecule crystal structures: the case of loxistatin acid (E64c)

2015

After a long history of use as a prototype cysteine protease inhibitor, the crystal structure of loxistatin acid (E64c) is finally determined experimentally using intense synchrotron radiation, providing insight into how the inherent electronic nature of this protease inhibitor molecule determines its biochemical activity. Based on the striking similarity of its intermolecular interactions with those observed in a biological environment, the electrostatic potential of crystalline E64c is used to map the characteristics of a pseudo-enzyme pocket.

010405 organic chemistryChemistryIntermolecular forceGeneral ChemistryCrystal structureBiochemical Activity010402 general chemistry01 natural sciencesCysteine proteaseCatalysisProtease inhibitor (biology)0104 chemical sciencesCrystallographyLoxistatinComplementarity (molecular biology)Materials ChemistrymedicineMoleculemedicine.drugNew Journal of Chemistry
researchProduct

Similarities and differences between crystal and enzyme environmental effects on the electron density of drug molecules

2021

Abstract The crystal interaction density is generally assumed to be a suitable measure of the polarization of a low‐molecular weight ligand inside an enzyme, but this approximation has seldomly been tested and has never been quantified before. In this study, we compare the crystal interaction density and the interaction electrostatic potential for a model compound of loxistatin acid (E64c) with those inside cathepsin B, in solution, and in vacuum. We apply QM/MM calculations and experimental quantum crystallography to show that the crystal interaction density is indeed very similar to the enzyme interaction density. Less than 0.1 e are shifted between these two environments in total. Howeve…

Electron densityStatic ElectricityElectrons010402 general chemistryLigands01 natural sciencesCatalysisprotease inhibitor540 ChemistryMoleculeelectron densityPolarization (electrochemistry)Quantumchemistry.chemical_classificationpolarizationFull Paperintermolecular interactions010405 organic chemistryOrganic ChemistryIntermolecular forceEnzyme InteractionGeneral ChemistryFull Papers0104 chemical sciences3. Good healthMolecular RecognitionEnzymeelectrostatic potentialchemistryPharmaceutical PreparationsLoxistatinChemical physics570 Life sciences; biology
researchProduct

CCDC 1498221: Experimental Crystal Structure Determination

2017

Related Article: Ming W. Shi, Scott G. Stewart, Alexandre N. Sobolev, Birger Dittrich, Tanja Schirmeister, Peter Luger, Malte Hesse, Yu-Sheng Chen, Peter R. Spackman,Mark A. Spackman, Simon Grabowsky|2017|J.Phys.Org.Chem.|30|e3683|doi:10.1002/poc.3683

(2S3S)-3-carbamoyl-2-ethoxycarbonyloxiraneSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 977799: Experimental Crystal Structure Determination

2015

Related Article: Ming W. Shi, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Thomas C. Schmidt, Peter Luger, Stefan Mebs, Birger Dittrich, Yu-Sheng Chen, Joanna M. Bąk, Dylan Jayatilaka, Charles S. Bond, Michael J. Turner, Scott G. Stewart, Mark A. Spackman and Simon Grabowsky|2015|New J.Chem.|39|1628|doi:10.1039/C4NJ01503G

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters3-((4-methyl-1-((3-methylbutyl)amino)-1-oxopentan-2-yl)carbamoyl)oxirane-2-carboxylic acidExperimental 3D Coordinates
researchProduct

CCDC 2024395: Experimental Crystal Structure Determination

2021

Related Article: Florian Kleemiss, Erna K. Wieduwilt, Emanuel Hupf, Ming W. Shi, Scott G. Stewart, Dylan Jayatilaka, Michael J. Turner, Kunihisa Sugimoto, Eiji Nishibori, Tanja Schirmeister, Thomas C. Schmidt, Bernd Engels, Simon Grabowsky|2021|Chem.-Eur.J.|27|3407|doi:10.1002/chem.202003978

Space GroupCrystallographyCrystal Systempotassium (2S3S)-3-carbamoyloxirane-2-carboxylate monohydrateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1498219: Experimental Crystal Structure Determination

2017

Related Article: Ming W. Shi, Scott G. Stewart, Alexandre N. Sobolev, Birger Dittrich, Tanja Schirmeister, Peter Luger, Malte Hesse, Yu-Sheng Chen, Peter R. Spackman,Mark A. Spackman, Simon Grabowsky|2017|J.Phys.Org.Chem.|30|e3683|doi:10.1002/poc.3683

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersethyl (2R3R)-3-((S)-1-((benzyloxy)carbonyl)phenylalanyl)oxirane-2-carboxylateExperimental 3D Coordinates
researchProduct

CCDC 1498220: Experimental Crystal Structure Determination

2017

Related Article: Ming W. Shi, Scott G. Stewart, Alexandre N. Sobolev, Birger Dittrich, Tanja Schirmeister, Peter Luger, Malte Hesse, Yu-Sheng Chen, Peter R. Spackman,Mark A. Spackman, Simon Grabowsky|2017|J.Phys.Org.Chem.|30|e3683|doi:10.1002/poc.3683

Space GroupCrystallographyCrystal Systemcatena-[(mu-(2S3S)-3-carbamoyloxirane-2-carboxylic acid)-(mu-trifluoroacetato)-potassium]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct