0000000000725129

AUTHOR

Hjm Henk Swagten

showing 2 related works from this author

Asymmetric hysteresis for probing Dzyalohsinskii-Moriya interaction

2016

The interfacial Dzyaloshinskii-Moriya interaction (DMI) is intimately related to the prospect of superior domain-wall dynamics and the formation of magnetic skyrmions. Although some experimental efforts have been recently proposed to quantify these interactions and the underlying physics, it is still far from trivial to address the interfacial DMI. Inspired by the reported tilt of the magnetization of the side edge of a thin film structure, we here present a quasi-static, straightforward measurement tool. By using laterally asymmetric triangular-shaped microstructures, it is demonstrated that interfacial DMI combined with an in-plane magnetic field yields a unique and significant shift in m…

perpendicular magnetic anisotropyNucleationFOS: Physical sciencesBioengineering02 engineering and technology01 natural sciencesMagnetization0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)General Materials Sciencechiral magnetThin film010306 general physicsPhysicsDzyaloshinskii-Moriya interactionspintronicsCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale PhysicsSpintronicsCondensed matter physicsMechanical EngineeringSkyrmionMaterials Science (cond-mat.mtrl-sci)General Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsMagnetic hysteresisMagnetic fieldHysteresisnanomagnetism0210 nano-technologyasymmetric hysteresis loopNano Letters
researchProduct

Magnetic states in low-pinning high-anisotropy material nanostructures suitable for dynamic imaging

2013

We present magnetic domain states in a material configuration with high (perpendicular) magnetic anisotropy and particularly low magnetic pinning. This material, a B-doped Co/Pt multilayer configuration, exhibits a strong magnetic contrast in x-ray transmission experiments, making it apt for dynamic imaging with modern synchrotron techniques, providing high spatial and high temporal resolution simultaneously. By analyzing the static spin structures in nanodisks at variable external fields, we show that CoB/Pt multilayers exhibit low enough domain wall pinning to manipulate the domain pattern with weak stimuli and in particular to move domains and domain walls. We demonstrate in a proof-of-p…

Magnetization dynamicsMaterials scienceCondensed matter physicsMagnetic domain530 Physicsbusiness.industry02 engineering and technology530 Physik021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsMagnetic fieldMagnetic anisotropyDomain wall (magnetism)Optics0103 physical sciencesddc:530Single domain010306 general physics0210 nano-technologyAnisotropybusinessSpin-½Phys. Rev. B 87, 134422
researchProduct