0000000000726005

AUTHOR

Charles-alban Deledalle

showing 4 related works from this author

Refitting Solutions Promoted by $$\ell _{12}$$ Sparse Analysis Regularizations with Block Penalties

2019

International audience; In inverse problems, the use of an l(12) analysis regularizer induces a bias in the estimated solution. We propose a general refitting framework for removing this artifact while keeping information of interest contained in the biased solution. This is done through the use of refitting block penalties that only act on the co-support of the estimation. Based on an analysis of related works in the literature, we propose a new penalty that is well suited for refitting purposes. We also present an efficient algorithmic method to obtain the refitted solution along with the original (biased) solution for any convex refitting block penalty. Experiments illustrate the good be…

Artifact (error)Total variationComputer scienceRegular polygon02 engineering and technologyInverse problem01 natural sciences[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]010104 statistics & probabilityRefitting0202 electrical engineering electronic engineering information engineeringBias correction020201 artificial intelligence & image processingBias correction0101 mathematics[MATH]Mathematics [math]AlgorithmBlock (data storage)Scale Space and Variational Methods in Computer Vision - 7th International Conference, SSVM 2019, Hofgeismar, Germany, June 30 – July 4, 2019, Proceedings
researchProduct

CLEAR: Covariant LEAst-Square Refitting with Applications to Image Restoration

2017

International audience; In this paper, we propose a new framework to remove parts of the systematic errors affecting popular restoration algorithms, with a special focus for image processing tasks. Generalizing ideas that emerged for $\ell_1$ regularization, we develop an approach re-fitting the results of standard methods towards the input data. Total variation regularizations and non-local means are special cases of interest. We identify important covariant information that should be preserved by the re-fitting method, and emphasize the importance of preserving the Jacobian (w.r.t. the observed signal) of the original estimator. Then, we provide an approach that has a ``twicing'' flavor a…

FOS: Computer and information sciencesInverse problemsMathematical optimization[ INFO.INFO-TS ] Computer Science [cs]/Signal and Image ProcessingComputer Vision and Pattern Recognition (cs.CV)General MathematicsComputer Science - Computer Vision and Pattern RecognitionMachine Learning (stat.ML)Mathematics - Statistics TheoryImage processingStatistics Theory (math.ST)02 engineering and technologyDebiasing[ INFO.INFO-CV ] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]01 natural sciencesRegularization (mathematics)Boosting010104 statistics & probabilitysymbols.namesake[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing[STAT.ML]Statistics [stat]/Machine Learning [stat.ML]Variational methods[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]Statistics - Machine LearningRefittingMSC: 49N45 65K10 68U10[ INFO.INFO-TI ] Computer Science [cs]/Image ProcessingFOS: Mathematics0202 electrical engineering electronic engineering information engineeringCovariant transformation[ MATH.MATH-ST ] Mathematics [math]/Statistics [math.ST]0101 mathematicsImage restoration[ STAT.ML ] Statistics [stat]/Machine Learning [stat.ML]MathematicsApplied Mathematics[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]EstimatorInverse problem[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]Jacobian matrix and determinantsymbolsTwicing020201 artificial intelligence & image processingAffine transformationAlgorithm
researchProduct

Characterizing the maximum parameter of the total-variation denoising through the pseudo-inverse of the divergence

2017

International audience; We focus on the maximum regularization parameter for anisotropic total-variation denoising. It corresponds to the minimum value of the regularization parameter above which the solution remains constant. While this value is well know for the Lasso, such a critical value has not been investigated in details for the total-variation. Though, it is of importance when tuning the regularization parameter as it allows fixing an upper-bound on the grid for which the optimal parameter is sought. We establish a closed form expression for the one-dimensional case, as well as an upper-bound for the two-dimensional case, that appears reasonably tight in practice. This problem is d…

FOS: Computer and information sciences[ INFO.INFO-TS ] Computer Science [cs]/Signal and Image Processing[INFO.INFO-TS]Computer Science [cs]/Signal and Image ProcessingStatistics - Machine Learning[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]RegularizationPseudo-inverse[ INFO.INFO-TI ] Computer Science [cs]/Image ProcessingMachine Learning (stat.ML)[STAT.TH]Statistics [stat]/Statistics Theory [stat.TH]Total-variation[ STAT.TH ] Statistics [stat]/Statistics Theory [stat.TH]Divergence
researchProduct

Refitting solutions promoted by $\ell_{12}$ sparse analysis regularization with block penalties

2019

International audience; In inverse problems, the use of an $\ell_{12}$ analysis regularizer induces a bias in the estimated solution. We propose a general refitting framework for removing this artifact while keeping information of interest contained in the biased solution. This is done through the use of refitting block penalties that only act on the co-support of the estimation. Based on an analysis of related works in the literature, we propose a new penalty that is well suited for refitting purposes. We also present an efficient algorithmic method to obtain the refitted solution along with the original (biased) solution for any convex refitting block penalty. Experiments illustrate the g…

[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing[INFO.INFO-TS] Computer Science [cs]/Signal and Image ProcessingOptimization and Control (math.OC)Image and Video Processing (eess.IV)FOS: MathematicsFOS: Electrical engineering electronic engineering information engineeringElectrical Engineering and Systems Science - Image and Video ProcessingMathematics - Optimization and Control
researchProduct