0000000000726711
AUTHOR
Pablo M. Chacón
On the volume of unit vector fields on spaces of constant sectional curvature
A unit vector field X on a Riemannian manifold determines a submanifold in the unit tangent bundle. The volume of X is the volume of this submanifold for the induced Sasaki metric. It is known that the parallel fields are the trivial minima.
On the Energy of Distributions, with Application to the Quaternionic Hopf Fibrations
The energy of an oriented q-distribution ? in a compact oriented manifold M is defined to be the energy of the section of the Grassmannian manifold of oriented q-planes in M induced by ?. In the Grassmannian, the Sasaki metric is considered. We show here a condition for a distribution to be a critical point of the energy functional. In the spheres, we see that Hopf fibrations \(\) are critical points. Later, we prove the instability for these fibrations.