0000000000727004
AUTHOR
Christophe Champion
Low energy electrons and swift ion track structure in PADC
The current work aims at providing an accurate description of the ion track-structure in poly-allyl dyglycol carbonate (PADC) by using an up-to-date Monte-Carlo code-called TILDA-V (a French acronym for Transport d'Ions Lourds Dans l'Aqua & Vivo). In this simulation the ion track-structure in PADC is mainly described in terms of ejected electrons with a particular attention done to the Low Energy Electrons (LEEs). After a brief reminder of the most important channels through which LEEs are prone to break a chemical bond, we will report on the simulated energetic distributions of LEEs along an ion track in PADC for particular incident energies located on both sides of the Bragg-peak position…
Single- and Double-Strand Breaks of Dry DNA Exposed to Protons at Bragg-Peak Energies
International audience; Ultrathin layers (<20 nm) of pBR322 plasmid DNA were deposited onto 2.5 μm thick polyester films and exposed to proton Bragg-peak energies (90–3000 keV) at various fluences. A quantitative analysis of radio-induced DNA damage is reported here in terms of single- and double-strand breaks (SSB and DSB, respectively). The corresponding yields as well as G-values and the cross sections exhibit fairly good agreement with the rare available data, stemming from close experimental conditions, namely, based on α particle irradiation. SSB/DSB rates appear to be linear when plotted against linear energy transfer (LET) in the whole energy range studied. All the data present a ma…