0000000000730836

AUTHOR

A. Breur

showing 2 related works from this author

XENON100 dark matter results from a combination of 477 live days

2016

We report on WIMP search results of the XENON100 experiment, combining three runs summing up to 477 live days from January 2010 to January 2014. Data from the first two runs were already published. A blind analysis was applied to the last run recorded between April 2013 and January 2014 prior to combining the results. The ultra-low electromagnetic background of the experiment, ~$5 \times 10^{-3}$ events/(keV$_{\mathrm{ee}}\times$kg$\times$day) before electronic recoil rejection, together with the increased exposure of 48 kg $\times$ yr improves the sensitivity. A profile likelihood analysis using an energy range of (6.6 - 43.3) keV$_{\mathrm{nr}}$ sets a limit on the elastic, spin-independe…

Scattering cross-sectionPhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics - Instrumentation and DetectorsProton010308 nuclear & particles physicsDark matterFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)01 natural sciences7. Clean energyXENON DARK MATTER WIMP TPCNuclear physicsRecoilWIMPLikelihood analysis0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Sensitivity (control systems)010306 general physicsEnergy (signal processing)Astrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review D
researchProduct

DARWIN: Towards the ultimate dark matter detector

2016

DARk matter WImp search with liquid xenoN (DARWIN) will be an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core. Its primary goal will be to explore the experimentally accessible parameter space for Weakly Interacting Massive Particles (WIMPs) in a wide mass-range, until neutrino interactions with the target become an irreducible background. The prompt scintillation light and the charge signals induced by particle interactions in the xenon will be observed by VUV sensitive, ultra-low background photosensors. Besides its excellent sensitivity to WIMPs above a mass of 5 GeV/c2, such a detector with its large mass, low-energy …

Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsdouble beta decay7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentPhysics Particles & FieldsNeutrino detectorHigh Energy Physics - Experiment (hep-ex)XenonWIMPPHOTOMULTIPLIERAXIONSphysics.ins-detsolar and atmospheric neutrinosPhysicsDark matter detectorTime projection chamberdark matter detectorsPhysicsSolar and atmospheric neutrinoInstrumentation and Detectors (physics.ins-det)Nuclear & Particles PhysicsNeutrino detectorSOLAR NEUTRINOSGASPhysical SciencesNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsGRAN SASSODark matter detectors; Double beta decay; Neutrino detectors; Solar and atmospheric neutrinosDark matterchemistry.chemical_elementFOS: Physical sciencesAstronomy & AstrophysicsLIQUID-XENON DETECTOR0202 Atomic Molecular Nuclear Particle And Plasma PhysicsSettore FIS/05 - Astronomia e AstrofisicaSEARCH0103 physical sciencesIsotopes of xenonZEPLIN-III[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsAxionInstrumentation and Methods for Astrophysics (astro-ph.IM)Science & Technology010308 nuclear & particles physicshep-exAstronomyAstronomy and Astrophysics0201 Astronomical And Space ScienceschemistryHigh Energy Physics::ExperimentSCINTILLATIONneutrino detectorsastro-ph.IMJournal of Cosmology and Astroparticle Physics
researchProduct