0000000000731508
AUTHOR
Vadim Yu. Kukushkin
Coupling of Azomethine Ylides with Nitrilium Derivatives ofcloso-Decaborate Clusters: A Synthetic and Theoretical Study
The azomethine ylides p-R3C5H4N+CH−COC6H4R2-p (3 a: R3=H, R2=H, X=Br; 3 b: R3=H, R2=Me, X=I; 3 c: R3=H, R2=OMe, X=I; 3 d: R3=H, R2=F, X=I; 3 e: R3=Me, R2=Me, X=Br) react with the nitrile functionality of the closo-decaborate clusters [Bun4N][B10H9(NCR1)] (1 a: R1=Me; 1 b: R1=Et; 1 c: R1=Ph) in a CH3NO2 solution under mild conditions (20–25 °C, 2 min) to afford selectively products of the nucleophilic addition (ca. quantitative yields based on NMR analysis in [D6]DMSO, 71–87 % yield of isolated products). These products are the borylated enamino ketones as the salts bearing exclusively a tetrabutylammonium cation [Bun4N][B10H9{NCR1=C(N+C5H4R3-p)COC6H4R2-p}] (4 a–h,k–n) or the mixed salts [Bu…
Reaction between Indazole and Pd-Bound Isocyanides-A Theoretical Mechanistic Study
The mechanism of the addition of indazole (Ind)&mdash
PdII-mediated integration of isocyanides and azide ions might proceed via formal 1,3-dipolar cycloaddition between RNC ligands and uncomplexed azide
Reaction between equimolar amounts of trans-[PdCl(PPh3)2(CNR)][BF4] (R = t-Bu 1, Xyl 2) and diisopropylammonium azide 3 gives the tetrazolate trans-[PdCl(PPh3)2(N4t-Bu)] (67%, 4) or trans-[PdCl(PPh3)2(N4Xyl)] (72%, 5) complexes. 4 and 5 were characterized by elemental analyses (C, H, N), HRESI+-MS, 1H and 13C{1H} NMR spectroscopies. In addition, the structure of 4 was elucidated by a single-crystal X-ray diffraction. DFT calculations showed that the mechanism for the formal cycloaddition (CA) of N3− to trans-[PdCl(PH3)2(CNMe)]+ is stepwise. The process is both kinetically and thermodynamically favorable and occurs via the formation of an acyclic NNNCN-intermediate. The second step of the fo…
Weak intermolecular interactions promote blue luminescence of protonated 2,2′-dipyridylamine salts
In this work we demonstrate that protonation and π-stacking can be exploited to convert non-luminescent 2,2′-dipyridylamine into blue-emitting derivatives. We have synthesized a series of luminescent 2,2′-dipyridylamine (dpa) salts, i.e., (dpaH)X·nSolv (dpa = 2,2′-dipyridylamine, X = HF2, n = 0.5, Solv = H2O 1; X = Cl, n = 2, Solv = H2O 2; X = Br, n = 2, Solv = H2O 3; X = I n = 1, Solv = H2O 4a; X = I n = 1, Solv = CHCl34b), (dpaH)2[SiF6]·H2O 5 and (dpaH)X (X = I36; SbF67; BF48) and characterized their emission properties, both in the solid-state and in solution. To rationalize our observations and relate the luminescence properties to the structure in the solid state and in solution, we ha…
Two complexes of Pt(IV) and Au(III) with 2,2'-dipyridylamine and 2,2'-dipyridylaminide ligands
Two noble metal complexes involving ancillary chloride ligands and chelating 2,2′-bipyridylamine (Hdpa) or its deprotonated derivative (dpa), namely [bis(pyridin-2-yl-κN)amine]tetrachloridoplatinum(IV), [PtCl4(C10H9N3)], and [bis(pyridin-2-yl-κN)aminido]dichloridogold(III), [AuCl2(C10H8N3)], are presented and structurally characterized. The metal atom in the former has a slightly distorted octahedral coordination environment, formed by four chloride ligands and two pyridyl N atoms of Hdpa, while the metal atom in the latter has a slightly distorted square-planar coordination environment, formed by two chloride ligands and two pyridyl N atoms of dpa. The difference in conjugation between the…
ADC-Based Palladium Catalysts for Aqueous Suzuki Miyaura Cross-Coupling Exhibit Greater Activity than the Most Advantageous Catalytic Systems
The reaction between the equimolar amounts of cis-[PdCl2(CNR1)2] (R1 = cyclohexyl (Cy) (1), tBu (2)) and the carbohydrazides R2CONHNH2 (R2 = Ph (5), 4-ClC6H4 (6), 3-NO2C6H4 (7), 4-NO2C6H4 (8), 4-CH3C6H4 (9), 3,4-(MeO)2C6H3 (10), naphth-1-yl (11), fur-2-yl (12), 4-NO2C6H4CH2 (13), Cy (14), 1-(4-fluorophenyl)-5-oxopyrrolidin-3-yl (15), (pyrrolidin-1-yl)C(O) (16)) proceeds in refluxing CHCl3 for ca. 4 h. A subsequent workup provided the aminocarbene species cis-[PdCl2{C(NHNHC(O)R2)═N(H)R1}(CNR1)] (18–33) in good to excellent (80–95%) isolated yields. The coupling of equimolar amounts of cis-[PdCl2(CNR1)2] (R1 = Cy (1), tBu (2), 2,6-Me2C6H3 (Xyl) (3), 2-Cl-6-MeC6H3 (4)) and PhSO2NHNH2 (17) occu…
Back Cover Picture: Coupling of Azomethine Ylides with Nitrilium Derivatives ofcloso-Decaborate Clusters: A Synthetic and Theoretical Study (ChemPlusChem 12/2012)
Anionic halide···alcohol clusters in the solid state.
The cationic (1,3,5-triazapentadiene)Pt(II) complexes [1](Cl)2, [2](Cl)2, [3](Br)2, and [4](Cl)2, were crystallized from ROH-containing systems (R = Me, Et) providing alcohol solvates studied by X-ray diffraction. In the crystal structures of [1-4][(Hal)2(ROH)2] (R = Me, Et), the Hal(-) ion interacts with two or three cations [1-4](2+) by means of two or three or four contacts thus uniting stacked arrays of complexes into the layers. The solvated MeOH or EtOH molecules occupy vacant space, giving contacts with [1-4](2+), and connects to the Hal(-) ion through a hydrogen bridge via the H(1O)O(1S) H atom forming, by means of the Hal(-)···HOR (Hal = Cl, Br) contact, the halide-alcohol cluster.…
Triple associates based on (oxime)Pt(II) species, 18-crown-6, and water: Synthesis, structural characterization, and DFT study
Abstract The associates 2(cis-[PtCl2(acetoxime)2])⋅18-crown-6⋅2H2O (1), 2(cis-[PtBr2(acetoxime)2])⋅18-crown-6⋅2H2O (2), and trans-[PtCl2(acetaldoxime)2]⋅(18-crown-6)⋅2H2O (3) were synthesized by co-crystallization of free corresponding platinum species and 18-crown-6 from wet solvents and characterized by 1H NMR and IR spectroscopies, high-resolution mass-spectrometry (ESI), TG/DTA, and X-ray crystallography. The (oxime)Pt(II) species are assembled with 18-crown-6 and water by hydrogen bonding between the hydroxylic hydrogen atoms of the oxime ligands and the oxygen atom of water and between the hydrogen atoms of water and the oxygen atoms of 18-crown-6. In 2(cis-[PtX2(acetoxime)2])⋅18-crow…
Phosphorescent Pt II Systems Featuring Both 2,2′‐Dipyridylamine and 1,3,5‐Triazapentadiene Ligands
The treatment of cis-[Pt(dpa)(RCN)2][SO3CF3]2 {dpa = 2,2′-dipyridylamine, R = Me, Et, CH2Ph, Ph; [2a–d](OTf)2} (OTf = SO3CF3) with 2 equiv. of N,N′-diphenylguanidine [NH=C(NHPh)2] in CH2Cl2 solutions at room temp. for 16 h gives [Pt(dpa){NH=C(R)NC(NHPh)=NPh}][SO3CF3] {[3a,b,d](OTf)} as the addition products and [Pt(dpa){NH=C(R)NHC(R)=NH}][SO3CF3]2 {[4a,b](OTf)2} as the tailoring products. The formulation of complexes [3a,b,d](OTf) and [4a,b](OTf)2 was supported by satisfactory C, H, and N elemental analyses and agreeable high-resolution ESI-MS, IR, and 1H (including 1H–1H COSY experiments) and 13C{1H} NMR data. The structures of all of the platinum species were determined by single-crystal …
Metallophilic interactions in polymeric group 11 thiols
Three polymeric group 11 transition metal polymers featuring metallophilic interactions were obtained directly via self-assembly of metal ions and 4-pyridinethiol ligands. In the cationic [Cu2(S-pyH)4]n2+ with [ZnCl4]n2− counterion (1) and in the neutral [Ag(S-py) (S-pyH)]n (2) 4-pyridinethiol (S-pyH) and its deprotonated form (S-py) are coordinated through the sulfur atom. Both ligands are acting as bridging ligands linking the metal centers together. In the solid state, the gold(I) polymer [Au(S-pyH)2]Cl (3) consists of the repeating cationic [Au(S-pyH)2]+ units held together by aurophilic interactions. Compound 1 is a zig-zag chain, whereas the metal chains in the structures of 2 and 3 a…
Halogen Bonding Involving Palladium(II) as an XB Acceptor
The half-lantern PdII2 complexes trans-(O,C)-[Pd(ppz)(μ-O∩N)]2 (1) and trans-(E,N)-[Pd(ppz)(μ-E∩N)]2 (E∩N is a deprotonated 2-substituted pyridine; E = S (2), Se (3); Hppz = 1-phenylpyrazole) were ...
Reactions of platinum(iv)-bound nitriles with isomeric nitroanilines: addition vs. substitution
The platinum(IV) complex trans-[PtCl(4)(EtCN)(2)] reacts smoothly and under mild conditions with isomeric o-, m- and p-nitroanilines (NAs) yielding two different types of products depending on the NA isomer, viz. the nitroaniline complexes cis/trans-[PtCl(4)(NA)(2)] (cis/trans-1-3) and the amidine species trans-[PtCl(4){NH=C(Et)NHC(6)H(4)NO(2)-m}(EtCN)] (4), trans-[PtCl(4){NH=C(Et)NHC(6)H(4)NO(2)-m}(2)] (5) and trans-[PtCl(4){NH=C(Et)NHC(6)H(4)NO(2)-p}(EtCN)] (6). Complexes 4 and 5 undergo cyclometalation, furnishing mer-[PtCl(3){NH=C(Et)NHC(6)H(3)NO(2)-m}(EtCN)] (7) and mer-[PtCl(3){NH=C(Et)NHC(6)H(4)NO(2)-m}{NH=C(Et)NHC(6)H(3)NO(2)-m}] (8), respectively. Moreover, 8 both in the solid stat…
The H2C(X)–X•••X– (X = Cl, Br) Halogen Bonding of Dihalomethanes
The dihalomethane–halide H2C(X)–X···X– (X = Cl, Br) halogen bonding was detected in a series of the cis-[PdX(CNCy){C(NHCy)═NHC6H2Me2NH2}]X•CH2X2 (X = Cl, Br) associates by single-crystal XRD followed by DFT calculations. Although ESP calculations demonstrated that the σ-hole of dichloromethane is the smallest among all halomethane solvents (the maximum electrostatic potential is only 2.6 kcal/mol), the theoretical DFT calculations followed by Bader’s QTAIM analysis (M06/DZP-DKH level of theory) confirmed the H2C(X)–X···X– halogen bond in both the solid-state and gas-phase optimized geometries. The estimated bonding energy in H2C(X)–X···X– is in the 1.9–2.8 kcal/mol range. peerReviewed
Fine-tuning halogen bonding properties of diiodine through halogen–halogen charge transfer – extended [Ru(2,2′-bipyridine)(CO)2X2]·I2 systems (X = Cl, Br, I)
The current paper introduces the use of carbonyl containing ruthenium complexes, [Ru(bpy)(CO)2X2] (X = Cl, Br, I), as halogen bond acceptors for a I2 halogen bond donor. In all structures, the metal coordinated halogenido ligand acts as the actual halogen bond acceptor. Diiodine, I2, molecules are connected to the metal complexes through both ends of the molecule forming bridges between the complexes. Due to the charge transfer from Ru–X to I2, formation of the first Ru–X⋯I2 contact tends to generate a negative charge on I2 and redistribute the electron density anisotropically. If the initial Ru–X⋯IA–IB interaction causes a notable change in the electron density of I2, the increased negativ…
Palladium-ADC complexes as efficient catalysts in copper-free and room temperature Sonogashira coupling
Abstract The metal-mediated coupling between cis-[PdCl2(CNR1)2] [R1 = cyclohexyl (Cy) 1, t-Bu 2, 2,6-Me2C6H3 (Xyl) 3, 2-Cl-6-MeC6H3 4] and hydrazones H2NN CR2R3 [R2, R3 = Ph 5; R2, R3 = C6H4(OMe-4) 6; R2/R3 = 9-fluorenyl 7; R2 = H, R3 = C6H4(OH-2) 8] provided carbene complexes cis-[PdCl2{C(N(H)N CR2R3) N(H)R1}(CNR1)] (9–24) in good (80–85%) yields. Complexes 9–24 showed high activity [yields up to 99%, and turnover numbers (TONs) up to 3.7 × 104] in the Sonogashira coupling of various aryl iodides with a range of substituted aromatic alkynes without the need of copper co-catalyst. The catalytic procedure runs at 80 °C for 1 h in EtOH using K2CO3 as a base. No formation of homocoupling or ac…
Application of palladium complexes bearing acyclic amino(hydrazido)carbene ligands as catalysts for copper-free Sonogashira cross-coupling
Abstract Metal-mediated coupling of one isocyanide in cis-[PdCl2(CNR1)2] (R1 = C6H11 (Cy) 1, tBu 2, 2,6-Me2C6H3 (Xyl) 3, 2-Cl-6-MeC6H3 4) and various carbohydrazides R2CONHNH2 [R2 = Ph 5, 4-ClC6H4 6, 3-NO2C6H4 7, 4-NO2C6H4 8, 4-CH3C6H4 9, 3,4-(MeO)2C6H3 10, naphth-1-yl 11, fur-2-yl 12, 4-NO2C6H4CH2 13, Cy 14, 1-(4-fluorophenyl)-5-oxopyrrolidine-3-yl 15, (pyrrolidin-1-yl)C(O) 16, 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propane-1-yl 17, EtNHC(O) 18] or sulfohydrazides R3SO2NHNH2 [R3 = Ph 19, 4-MeC6H4 20] led to a series of (hydrazido)(amino)carbene complexes cis-[PdCl2{ C (NHNHX) N(H)R1}(CNR1)]; X = COR2, SO2R3 (21–48, isolated yields 60–96%). All prepared species were characterized by elemental…
Diversity of Isomerization Patterns and Protolytic Forms in Aminocarbene PdII and PtII Complexes Formed upon Addition of N,N′-Diphenylguanidine to Metal-Activated Isocyanides
Reaction of the palladium(II) and platinum(II) isocyanide complexes cis-[MCl2(CNR)2] [M = Pd, R = C6H3(2,6-Me2) (Xyl), 2-Cl-6-MeC6H3, cyclohexyl (Cy), t-Bu, C(Me)2CH2(Me)3 (1,1,3,3-tetramethylbuth-1-yl abbreviated as tmbu); M = Pt, R = Xyl, 2-Cl-6-MeC6H3, Cy, t-Bu, and tmbu] with N,N′-diphenylguanidine (DPG) leads to DPG-derived metal-bound deprotonated acyclic diaminocarbene (ADC) species. This reaction occurs via a two-step process, involving the initial coupling of the guanidine with one of the isocyanides and leading to deprotonated monocarbene monochelated species, while the next addition grants the deprotonated bis-carbene bis-chelated metal compounds. DPG behaves as nucleophile, depr…
A family of heterotetrameric clusters of chloride species and halomethanes held by two halogen and two hydrogen bonds
Two previously reported 1,3,5,7,9-pentaazanona-1,3,6,8-tetraenate (PANT) chloride platinum(II) complexes [PtCl{HNC(R)NCN[C(Ph)C(Ph)]CNC(R)NH}] (R = tBu 1, Ph 2) form solvates with halomethanes 1·1¼CH2Cl2, 1·1⅖CH2Br2, and 2·CHCl3. All these species feature novel complex-solvent heterotetrameric clusters, where the structural units are linked simultaneously by two C–X⋯Cl–Pt (X = Cl, Br) halogen and two C–H⋯Cl–Pt hydrogen bonds. The geometric parameters of these weak interactions were determined using single-crystal XRD, and the natures of the XBs and HBs in the clusters were studied for the isolated model systems (1)2·(CH2Cl2)2, (1)2·(CH2Br2)2, and (2)2·(CHCl3)2 using DFT calculations and Bad…
"Recognition of a Novel Type X=N-Hal•••Hal' (X = , S, P; Hal = F, Cl, Br, I) Halogen Bonding"
The chlorination of the eight-membered platinum(II) chelates (PtCl2{NHC(NR2)N(Ph)C(NH)- N(Ph)C(NR2)NH}) (R = Me (1); R2 = (CH2)5 (2)) with uncomplexed imino group with Cl2 gives complexes bearing the N−Cl moiety (PtCl4{NHC(NR2)N(Ph)C(NCl)N- (Ph)C(NR2)NH}) (R = Me (3); R2 = (CH2)5 (4)). X-ray study for 3 revealed a novel type intermolecular halogen bonding N−Cl···Cl − , formed between the Cl atom of the chlorinated imine and the chloride bound to the platinum(IV) center. The processing relevant structural data retrieved from the Cambridge Structural Database (CSDB) shows that this type of halogen bonding is realized in 18 more molecular species having XN−Hal moieties (X = C, P, S, V…
Identification and H(D)-bond energies of C-H(D)Cl interactions in chloride-haloalkane clusters: a combined X-ray crystallographic, spectroscopic, and theoretical study.
The cationic (1,3,5-triazapentadiene)Pt(II) complex [Pt{NH[double bond, length as m-dash]C(N(CH2)5)N(Ph)C(NH2)[double bond, length as m-dash]NPh}2]Cl2 ([]Cl2) was crystallized from four haloalkane solvents giving [][Cl2(CDCl3)4], [][Cl2(CHBr3)4], [][Cl2(CH2Cl2)2], and [][Cl2(C2H4Cl2)2] solvates that were studied by X-ray diffraction. In the crystal structures of [][Cl2(CDCl3)4] and [][Cl2(CHBr3)4], the Cl(-) ion interacts with two haloform molecules via C-DCl(-) and C-HCl(-) contacts, thus forming the negatively charged isostructural clusters [Cl(CDCl3)2](-) and [Cl(CHBr3)2](-). In the structures of [][Cl2(CH2Cl2)2] and [][Cl2(C2H4Cl2)2], cations [](2+) are linked to a 3D-network by a syste…
Weak aurophilic interactions in a series of Au(III) double salts.
In this work, several new examples of rare AuIII⋯AuIII aurophilic contacts are reported. A series of gold(III) double salts and complexes, viz. [AuX2(L)][AuX4] (L = 2,2′-bipyridyl, X = Cl 1, Br 2; L = 2,2′-bipyrimidine, X = Cl 3, Br 4; L = 2,2′-dipyridylamine, X = Cl 5, Br 6), [AuX3(biq)] (biq = 2,2′-biquinoline, X = Cl 7, Br 8), [LH][AuX4] (L = 2,2′-bipyridyl, X = Cl 9; L = 2,2′-bipyrimidine, X = Cl 12; L = 2,2′-dipyridylamine, X = Cl 14, Br 15; L = 2,2′-biquinoline, X = Cl 17, Br 18), [AuBr2(bpy)]2[AuBr4][AuBr2] 10, [AuCl2(bpm)][AuCl2] 11, (bpmH)2[AuBr4][AuBr2] 13, and (dpaH)[AuBr2] 16 (1, 2, and 7 were reported earlier) was synthesized by coordination of a particular ligand to the AuIII …
The H2C(X)–X•••X– (X = Cl, Br) Halogen Bonding of Dihalomethanes
The dihalomethane–halide H2C(X)–X···X– (X = Cl, Br) halogen bonding was detected in a series of the cis-[PdX(CNCy){C(NHCy)═NHC6H2Me2NH2}]X•CH2X2 (X = Cl, Br) associates by single-crystal XRD followed by DFT calculations. Although ESP calculations demonstrated that the σ-hole of dichloromethane is the smallest among all halomethane solvents (the maximum electrostatic potential is only 2.6 kcal/mol), the theoretical DFT calculations followed by Bader’s QTAIM analysis (M06/DZP-DKH level of theory) confirmed the H2C(X)–X···X– halogen bond in both the solid-state and gas-phase optimized geometries. The estimated bonding energy in H2C(X)–X···X– is in the 1.9–2.8 kcal/mol range.
Amidrazone Complexes from a Cascade Platinum(II)-Mediated Reaction between Amidoximes and Dialkylcyanamides
The aryl amidoximes R'C6H4C(NH2)═NOH (R' = Me, 2a; H, 2b; CN, 2c; NO2, 2d) react with the dialkylcyanamide platinum(II) complexes trans-[PtCl2(NCNAlk2)2] (Alk2 = Me2, 1a; C5H10, 1b) in a 1:1 molar ratio in CHCl3 to form chelated mono-addition products [3a-h]Cl, viz. [PtCl(NCNAlk2){NH═C(NR2)ON═C(C6H4R')NH2}]Cl (Alk2 = Me2; R' = Me, a; H, b; CN, c; NO2, d; Alk2 = C5H10; R' = Me, e; H, f; CN, g; NO2, h). In the solution, these species spontaneously transform to the amidrazone complexes [PtCl2{NH═C(NR2)NC(C6H4R')NNH2}] (7a-h; 36-47%); this conversion proceeds more selectively (49-60% after column chromatography) in the presence of the base (PhCH2)3N. The observed reactivity pattern is specific …
Palladium(II)-Mediated Addition of Benzenediamines to Isocyanides: Generation of Three Types of Diaminocarbene Ligands Depending on the Isomeric Structure of the Nucleophile
Coupling of the palladium-bis(isocyanide) complexes cis-[PdCl2(CNR)2] (R = 2,6-Me2C6H3 1, 2-Cl-6-MeC6H3 2) with benzene-1,3-diamine (BDA1) leads to the diaminocarbene species cis-[PdCl2(CNR){C(NHR)═NH(1,3-C6H4NH2)}] (5 and 6, respectively). In this reaction, BDA1 behaves as a monofunctional nucleophile that adds to one of the RNC ligands by one amino group. By contrast, the reaction of 1 and 2 with benzene-1,4-diamine (BDA2) involves both amino functionalities of the diamine and leads to the binuclear species [cis-PdCl2(CNR){μ-C(NHR)═NH(1,4-C6H4)NH═C(NHR)}-(cis)-PdCl2(CNR)] (6 and 7) featuring two 1,4-bifunctional diaminocarbene ligands. The reaction of cis-[PdCl2(CNR)2] (R = cyclohexyl 3) …
CCDC 1029115: Experimental Crystal Structure Determination
Related Article: Alexander N. Chernyshev, Maria V. Chernysheva, Pipsa Hirva, Vadim Yu. Kukushkin, Matti Haukka|2015|Dalton Trans.|44|14523|doi:10.1039/C4DT03167A
CCDC 1982282: Experimental Crystal Structure Determination
Related Article: Eugene A. Katlenok, Matti Haukka, Oleg V. Levin, Antonio Frontera, Vadim Yu. Kukushkin|2020|Chem.-Eur.J.|26|7692|doi:10.1002/chem.202001196
CCDC 966548: Experimental Crystal Structure Determination
Related Article: Dmitrii S. Bolotin, Nadezhda A. Bokach, Andreii S. Kritchenkov, Matti Haukka, Vadim Yu. Kukushkin|2013|Inorg.Chem.|52|6378|doi:10.1021/ic4000878
CCDC 1029120: Experimental Crystal Structure Determination
Related Article: Alexander N. Chernyshev, Maria V. Chernysheva, Pipsa Hirva, Vadim Yu. Kukushkin, Matti Haukka|2015|Dalton Trans.|44|14523|doi:10.1039/C4DT03167A
CCDC 966545: Experimental Crystal Structure Determination
Related Article: Dmitrii S. Bolotin, Nadezhda A. Bokach, Andreii S. Kritchenkov, Matti Haukka, Vadim Yu. Kukushkin|2013|Inorg.Chem.|52|6378|doi:10.1021/ic4000878
CCDC 1009210: Experimental Crystal Structure Determination
Related Article: Xin Ding, Matti J. Tuikka, Pipsa Hirva, Vadim Yu. Kukushkin, Alexander S. Novikov, Matti Haukka|2016|CrystEngComm|18|1987|doi:10.1039/C5CE02396C
CCDC 966547: Experimental Crystal Structure Determination
Related Article: Dmitrii S. Bolotin, Nadezhda A. Bokach, Andreii S. Kritchenkov, Matti Haukka, Vadim Yu. Kukushkin|2013|Inorg.Chem.|52|6378|doi:10.1021/ic4000878
CCDC 1982285: Experimental Crystal Structure Determination
Related Article: Eugene A. Katlenok, Matti Haukka, Oleg V. Levin, Antonio Frontera, Vadim Yu. Kukushkin|2020|Chem.-Eur.J.|26|7692|doi:10.1002/chem.202001196
CCDC 1029124: Experimental Crystal Structure Determination
Related Article: Alexander N. Chernyshev, Maria V. Chernysheva, Pipsa Hirva, Vadim Yu. Kukushkin, Matti Haukka|2015|Dalton Trans.|44|14523|doi:10.1039/C4DT03167A
CCDC 1029116: Experimental Crystal Structure Determination
Related Article: Alexander N. Chernyshev, Maria V. Chernysheva, Pipsa Hirva, Vadim Yu. Kukushkin, Matti Haukka|2015|Dalton Trans.|44|14523|doi:10.1039/C4DT03167A
CCDC 986952: Experimental Crystal Structure Determination
Related Article: Ivan I. Eliseev, Pavel V. Gushchin, Yi-An Chen, Pi-Tai Chou, Matti Haukka, Galina L. Starova, Vadim Yu. Kukushkin|2014|Eur.J.Inorg.Chem.||4101|doi:10.1002/ejic.201402364
CCDC 912875: Experimental Crystal Structure Determination
Related Article: Mikhail A. Kinzhalov, Konstantin V. Luzyanin, Vadim P. Boyarskiy, Matti Haukka, and Vadim Yu. Kukushkin|2013|Organometallics|32|5212|doi:10.1021/om4007592
CCDC 986953: Experimental Crystal Structure Determination
Related Article: Ivan I. Eliseev, Pavel V. Gushchin, Yi-An Chen, Pi-Tai Chou, Matti Haukka, Galina L. Starova, Vadim Yu. Kukushkin|2014|Eur.J.Inorg.Chem.||4101|doi:10.1002/ejic.201402364
CCDC 1501943: Experimental Crystal Structure Determination
Related Article: Elena A. Valishina, M. Fátima C. Guedes da Silva, Mikhail A. Kinzhalov, Svetlana A. Timofeeva, Tatyana M. Buslaeva, Matti Haukka, Armando J.L. Pombeiro , Vadim P. Boyarskiy, Vadim Yu. Kukushkin, Konstantin V. Luzyanin|2014|J.Mol.Catal.A:Chem.|395|162|doi:10.1016/j.molcata.2014.08.018
CCDC 2040618: Experimental Crystal Structure Determination
Related Article: Eugene A. Katlenok, Anton V. Rozhkov, Oleg V. Levin, Matti Haukka, Maxim L. Kuznetsov, Vadim Yu. Kukushkin|2021|Cryst.Growth Des.|21|1159|doi:10.1021/acs.cgd.0c01474
CCDC 1541823: Experimental Crystal Structure Determination
Related Article: Svetlana A. Katkova, Mikhail A. Kinzhalov, Peter M. Tolstoy, Alexander S. Novikov, Vadim P. Boyarskiy, Anastasiia Yu. Ananyan, Pavel V. Gushchin, Matti Haukka, Andrey A. Zolotarev, Alexander Yu. Ivanov, Semen S. Zlotsky, Vadim Yu. Kukushkin|2017|Organometallics|36|4145|doi:10.1021/acs.organomet.7b00569
CCDC 1009213: Experimental Crystal Structure Determination
Related Article: Xin Ding, Matti J. Tuikka, Pipsa Hirva, Vadim Yu. Kukushkin, Alexander S. Novikov, Matti Haukka|2016|CrystEngComm|18|1987|doi:10.1039/C5CE02396C
CCDC 1009209: Experimental Crystal Structure Determination
Related Article: Xin Ding, Matti J. Tuikka, Pipsa Hirva, Vadim Yu. Kukushkin, Alexander S. Novikov, Matti Haukka|2016|CrystEngComm|18|1987|doi:10.1039/C5CE02396C
CCDC 1009523: Experimental Crystal Structure Determination
Related Article: Pavel V. Gushchin, Maxim L. Kuznetsov, Matti Haukka, and Vadim Yu. Kukushkin|2014|J.Phys.Chem.A|118|9529|doi:10.1021/jp506256a
CCDC 986955: Experimental Crystal Structure Determination
Related Article: Ivan I. Eliseev, Pavel V. Gushchin, Yi-An Chen, Pi-Tai Chou, Matti Haukka, Galina L. Starova, Vadim Yu. Kukushkin|2014|Eur.J.Inorg.Chem.||4101|doi:10.1002/ejic.201402364
CCDC 1009215: Experimental Crystal Structure Determination
Related Article: Xin Ding, Matti J. Tuikka, Pipsa Hirva, Vadim Yu. Kukushkin, Alexander S. Novikov, Matti Haukka|2016|CrystEngComm|18|1987|doi:10.1039/C5CE02396C
CCDC 1401548: Experimental Crystal Structure Determination
Related Article: Tatiyana V. Serebryanskaya, Alexander S. Novikov, Pavel V. Gushchin, Matti Haukka, Ruslan E. Asfin, Peter M. Tolstoy, Vadim Yu. Kukushkin|2016|Phys.Chem.Chem.Phys.(PCCP)|18|14104|doi:10.1039/C6CP00861E
CCDC 1501944: Experimental Crystal Structure Determination
Related Article: Elena A. Valishina, M. Fátima C. Guedes da Silva, Mikhail A. Kinzhalov, Svetlana A. Timofeeva, Tatyana M. Buslaeva, Matti Haukka, Armando J.L. Pombeiro , Vadim P. Boyarskiy, Vadim Yu. Kukushkin, Konstantin V. Luzyanin|2014|J.Mol.Catal.A:Chem.|395|162|doi:10.1016/j.molcata.2014.08.018
CCDC 1029121: Experimental Crystal Structure Determination
Related Article: Alexander N. Chernyshev, Maria V. Chernysheva, Pipsa Hirva, Vadim Yu. Kukushkin, Matti Haukka|2015|Dalton Trans.|44|14523|doi:10.1039/C4DT03167A
CCDC 1982284: Experimental Crystal Structure Determination
Related Article: Eugene A. Katlenok, Matti Haukka, Oleg V. Levin, Antonio Frontera, Vadim Yu. Kukushkin|2020|Chem.-Eur.J.|26|7692|doi:10.1002/chem.202001196
CCDC 1401547: Experimental Crystal Structure Determination
Related Article: Tatiyana V. Serebryanskaya, Alexander S. Novikov, Pavel V. Gushchin, Matti Haukka, Ruslan E. Asfin, Peter M. Tolstoy, Vadim Yu. Kukushkin|2016|Phys.Chem.Chem.Phys.(PCCP)|18|14104|doi:10.1039/C6CP00861E
CCDC 1009524: Experimental Crystal Structure Determination
Related Article: Pavel V. Gushchin, Maxim L. Kuznetsov, Matti Haukka, and Vadim Yu. Kukushkin|2014|J.Phys.Chem.A|118|9529|doi:10.1021/jp506256a
CCDC 2040622: Experimental Crystal Structure Determination
Related Article: Eugene A. Katlenok, Anton V. Rozhkov, Oleg V. Levin, Matti Haukka, Maxim L. Kuznetsov, Vadim Yu. Kukushkin|2021|Cryst.Growth Des.|21|1159|doi:10.1021/acs.cgd.0c01474
CCDC 1542914: Experimental Crystal Structure Determination
Related Article: Svetlana A. Katkova, Mikhail A. Kinzhalov, Peter M. Tolstoy, Alexander S. Novikov, Vadim P. Boyarskiy, Anastasiia Yu. Ananyan, Pavel V. Gushchin, Matti Haukka, Andrey A. Zolotarev, Alexander Yu. Ivanov, Semen S. Zlotsky, Vadim Yu. Kukushkin|2017|Organometallics|36|4145|doi:10.1021/acs.organomet.7b00569
CCDC 2040620: Experimental Crystal Structure Determination
Related Article: Eugene A. Katlenok, Anton V. Rozhkov, Oleg V. Levin, Matti Haukka, Maxim L. Kuznetsov, Vadim Yu. Kukushkin|2021|Cryst.Growth Des.|21|1159|doi:10.1021/acs.cgd.0c01474
CCDC 1435501: Experimental Crystal Structure Determination
Related Article: Mikhail A. Kinzhalov, Svetlana A. Timofeeva, Konstantin V. Luzyanin, Vadim P. Boyarskiy, Anton A. Yakimanskiy, Matti Haukka, Vadim Yu. Kukushkin|2016|Organometallics|35|218|doi:10.1021/acs.organomet.5b00936
CCDC 1435504: Experimental Crystal Structure Determination
Related Article: Mikhail A. Kinzhalov, Svetlana A. Timofeeva, Konstantin V. Luzyanin, Vadim P. Boyarskiy, Anton A. Yakimanskiy, Matti Haukka, Vadim Yu. Kukushkin|2016|Organometallics|35|218|doi:10.1021/acs.organomet.5b00936
CCDC 1009520: Experimental Crystal Structure Determination
Related Article: Pavel V. Gushchin, Maxim L. Kuznetsov, Matti Haukka, and Vadim Yu. Kukushkin|2014|J.Phys.Chem.A|118|9529|doi:10.1021/jp506256a
CCDC 880417: Experimental Crystal Structure Determination
Related Article: Evgeny Yu. Bulatov, Tatiana G. Chulkova, Irina A. Boyarskaya, Veniamin V. Kondratiev, Matti Haukka, Vadim Yu. Kukushkin|2014|J.Mol.Struct.|1068|176|doi:10.1016/j.molstruc.2014.04.010
CCDC 1435506: Experimental Crystal Structure Determination
Related Article: Mikhail A. Kinzhalov, Svetlana A. Timofeeva, Konstantin V. Luzyanin, Vadim P. Boyarskiy, Anton A. Yakimanskiy, Matti Haukka, Vadim Yu. Kukushkin|2016|Organometallics|35|218|doi:10.1021/acs.organomet.5b00936
CCDC 1029126: Experimental Crystal Structure Determination
Related Article: Alexander N. Chernyshev, Maria V. Chernysheva, Pipsa Hirva, Vadim Yu. Kukushkin, Matti Haukka|2015|Dalton Trans.|44|14523|doi:10.1039/C4DT03167A
CCDC 1982286: Experimental Crystal Structure Determination
Related Article: Eugene A. Katlenok, Matti Haukka, Oleg V. Levin, Antonio Frontera, Vadim Yu. Kukushkin|2020|Chem.-Eur.J.|26|7692|doi:10.1002/chem.202001196
CCDC 1009214: Experimental Crystal Structure Determination
Related Article: Xin Ding, Matti J. Tuikka, Pipsa Hirva, Vadim Yu. Kukushkin, Alexander S. Novikov, Matti Haukka|2016|CrystEngComm|18|1987|doi:10.1039/C5CE02396C
CCDC 912877: Experimental Crystal Structure Determination
Related Article: Mikhail A. Kinzhalov, Konstantin V. Luzyanin, Vadim P. Boyarskiy, Matti Haukka, and Vadim Yu. Kukushkin|2013|Organometallics|32|5212|doi:10.1021/om4007592
CCDC 1029123: Experimental Crystal Structure Determination
Related Article: Alexander N. Chernyshev, Maria V. Chernysheva, Pipsa Hirva, Vadim Yu. Kukushkin, Matti Haukka|2015|Dalton Trans.|44|14523|doi:10.1039/C4DT03167A
CCDC 868793: Experimental Crystal Structure Determination
Related Article: Evgeny Yu. Bulatov, Tatiana G. Chulkova, Irina A. Boyarskaya, Veniamin V. Kondratiev, Matti Haukka, Vadim Yu. Kukushkin|2014|J.Mol.Struct.|1068|176|doi:10.1016/j.molstruc.2014.04.010
CCDC 1401550: Experimental Crystal Structure Determination
Related Article: Tatiyana V. Serebryanskaya, Alexander S. Novikov, Pavel V. Gushchin, Matti Haukka, Ruslan E. Asfin, Peter M. Tolstoy, Vadim Yu. Kukushkin|2016|Phys.Chem.Chem.Phys.(PCCP)|18|14104|doi:10.1039/C6CP00861E
CCDC 1009521: Experimental Crystal Structure Determination
Related Article: Pavel V. Gushchin, Maxim L. Kuznetsov, Matti Haukka, and Vadim Yu. Kukushkin|2014|J.Phys.Chem.A|118|9529|doi:10.1021/jp506256a
CCDC 1009522: Experimental Crystal Structure Determination
Related Article: Pavel V. Gushchin, Maxim L. Kuznetsov, Matti Haukka, and Vadim Yu. Kukushkin|2014|J.Phys.Chem.A|118|9529|doi:10.1021/jp506256a
CCDC 880416: Experimental Crystal Structure Determination
Related Article: Evgeny Yu. Bulatov, Tatiana G. Chulkova, Irina A. Boyarskaya, Veniamin V. Kondratiev, Matti Haukka, Vadim Yu. Kukushkin|2014|J.Mol.Struct.|1068|176|doi:10.1016/j.molstruc.2014.04.010
CCDC 1029114: Experimental Crystal Structure Determination
Related Article: Alexander N. Chernyshev, Maria V. Chernysheva, Pipsa Hirva, Vadim Yu. Kukushkin, Matti Haukka|2015|Dalton Trans.|44|14523|doi:10.1039/C4DT03167A
CCDC 912876: Experimental Crystal Structure Determination
Related Article: Mikhail A. Kinzhalov, Konstantin V. Luzyanin, Vadim P. Boyarskiy, Matti Haukka, and Vadim Yu. Kukushkin|2013|Organometallics|32|5212|doi:10.1021/om4007592
CCDC 1414621: Experimental Crystal Structure Determination
Related Article: Mikhail A. Kinzhalov, Alexander S. Novikov, Konstantin V. Luzyanin, Matti Haukka, Armando J. L. Pombeiro, Vadim Yu. Kukushkin|2016|New J.Chem.|40|521|doi:10.1039/C5NJ02564H
CCDC 2040617: Experimental Crystal Structure Determination
Related Article: Eugene A. Katlenok, Anton V. Rozhkov, Oleg V. Levin, Matti Haukka, Maxim L. Kuznetsov, Vadim Yu. Kukushkin|2021|Cryst.Growth Des.|21|1159|doi:10.1021/acs.cgd.0c01474
CCDC 1009208: Experimental Crystal Structure Determination
Related Article: Xin Ding, Matti J. Tuikka, Pipsa Hirva, Vadim Yu. Kukushkin, Alexander S. Novikov, Matti Haukka|2016|CrystEngComm|18|1987|doi:10.1039/C5CE02396C
CCDC 1009211: Experimental Crystal Structure Determination
Related Article: Xin Ding, Matti J. Tuikka, Pipsa Hirva, Vadim Yu. Kukushkin, Alexander S. Novikov, Matti Haukka|2016|CrystEngComm|18|1987|doi:10.1039/C5CE02396C
CCDC 966546: Experimental Crystal Structure Determination
Related Article: Dmitrii S. Bolotin, Nadezhda A. Bokach, Andreii S. Kritchenkov, Matti Haukka, Vadim Yu. Kukushkin|2013|Inorg.Chem.|52|6378|doi:10.1021/ic4000878
CCDC 1456509: Experimental Crystal Structure Determination
Related Article: Daniil M. Ivanov, Alexander S. Novikov, Galina L. Starova, Matti Haukka, Vadim Yu. Kukushkin|2016|CrystEngComm|18|5278|doi:10.1039/C6CE01179A
CCDC 1501945: Experimental Crystal Structure Determination
Related Article: Elena A. Valishina, M. Fátima C. Guedes da Silva, Mikhail A. Kinzhalov, Svetlana A. Timofeeva, Tatyana M. Buslaeva, Matti Haukka, Armando J.L. Pombeiro , Vadim P. Boyarskiy, Vadim Yu. Kukushkin, Konstantin V. Luzyanin|2014|J.Mol.Catal.A:Chem.|395|162|doi:10.1016/j.molcata.2014.08.018
CCDC 1541822: Experimental Crystal Structure Determination
Related Article: Svetlana A. Katkova, Mikhail A. Kinzhalov, Peter M. Tolstoy, Alexander S. Novikov, Vadim P. Boyarskiy, Anastasiia Yu. Ananyan, Pavel V. Gushchin, Matti Haukka, Andrey A. Zolotarev, Alexander Yu. Ivanov, Semen S. Zlotsky, Vadim Yu. Kukushkin|2017|Organometallics|36|4145|doi:10.1021/acs.organomet.7b00569
CCDC 1029122: Experimental Crystal Structure Determination
Related Article: Alexander N. Chernyshev, Maria V. Chernysheva, Pipsa Hirva, Vadim Yu. Kukushkin, Matti Haukka|2015|Dalton Trans.|44|14523|doi:10.1039/C4DT03167A
CCDC 986951: Experimental Crystal Structure Determination
Related Article: Ivan I. Eliseev, Pavel V. Gushchin, Yi-An Chen, Pi-Tai Chou, Matti Haukka, Galina L. Starova, Vadim Yu. Kukushkin|2014|Eur.J.Inorg.Chem.||4101|doi:10.1002/ejic.201402364
CCDC 1542913: Experimental Crystal Structure Determination
Related Article: Svetlana A. Katkova, Mikhail A. Kinzhalov, Peter M. Tolstoy, Alexander S. Novikov, Vadim P. Boyarskiy, Anastasiia Yu. Ananyan, Pavel V. Gushchin, Matti Haukka, Andrey A. Zolotarev, Alexander Yu. Ivanov, Semen S. Zlotsky, Vadim Yu. Kukushkin|2017|Organometallics|36|4145|doi:10.1021/acs.organomet.7b00569
CCDC 1407541: Experimental Crystal Structure Determination
Related Article: Alexander N. Chernyshev, Maria V. Chernysheva, Pipsa Hirva, Vadim Yu. Kukushkin, Matti Haukka|2015|Dalton Trans.|44|14523|doi:10.1039/C4DT03167A
CCDC 1029128: Experimental Crystal Structure Determination
Related Article: Alexander N. Chernyshev, Maria V. Chernysheva, Pipsa Hirva, Vadim Yu. Kukushkin, Matti Haukka|2015|Dalton Trans.|44|14523|doi:10.1039/C4DT03167A
CCDC 1470271: Experimental Crystal Structure Determination
Related Article: Daniil M. Ivanov, Alexander S. Novikov, Galina L. Starova, Matti Haukka, Vadim Yu. Kukushkin|2016|CrystEngComm|18|5278|doi:10.1039/C6CE01179A
CCDC 1541821: Experimental Crystal Structure Determination
Related Article: Svetlana A. Katkova, Mikhail A. Kinzhalov, Peter M. Tolstoy, Alexander S. Novikov, Vadim P. Boyarskiy, Anastasiia Yu. Ananyan, Pavel V. Gushchin, Matti Haukka, Andrey A. Zolotarev, Alexander Yu. Ivanov, Semen S. Zlotsky, Vadim Yu. Kukushkin|2017|Organometallics|36|4145|doi:10.1021/acs.organomet.7b00569
CCDC 986954: Experimental Crystal Structure Determination
Related Article: Ivan I. Eliseev, Pavel V. Gushchin, Yi-An Chen, Pi-Tai Chou, Matti Haukka, Galina L. Starova, Vadim Yu. Kukushkin|2014|Eur.J.Inorg.Chem.||4101|doi:10.1002/ejic.201402364
CCDC 1982283: Experimental Crystal Structure Determination
Related Article: Eugene A. Katlenok, Matti Haukka, Oleg V. Levin, Antonio Frontera, Vadim Yu. Kukushkin|2020|Chem.-Eur.J.|26|7692|doi:10.1002/chem.202001196
CCDC 1456075: Experimental Crystal Structure Determination
Related Article: Daniil M. Ivanov, Alexander S. Novikov, Galina L. Starova, Matti Haukka, Vadim Yu. Kukushkin|2016|CrystEngComm|18|5278|doi:10.1039/C6CE01179A
CCDC 966544: Experimental Crystal Structure Determination
Related Article: Dmitrii S. Bolotin, Nadezhda A. Bokach, Andreii S. Kritchenkov, Matti Haukka, Vadim Yu. Kukushkin|2013|Inorg.Chem.|52|6378|doi:10.1021/ic4000878
CCDC 1517184: Experimental Crystal Structure Determination
Related Article: Daniil M. Ivanov, Mikhail A. Kinzhalov, Alexander S. Novikov, Ivan V. Ananyev, Anna A. Romanova, Vadim P. Boyarskiy, Matti Haukka, Vadim Yu. Kukushkin|2017|Cryst.Growth Des.|17|1353|doi:10.1021/acs.cgd.6b01754
CCDC 1029117: Experimental Crystal Structure Determination
Related Article: Alexander N. Chernyshev, Maria V. Chernysheva, Pipsa Hirva, Vadim Yu. Kukushkin, Matti Haukka|2015|Dalton Trans.|44|14523|doi:10.1039/C4DT03167A
CCDC 1401549: Experimental Crystal Structure Determination
Related Article: Tatiyana V. Serebryanskaya, Alexander S. Novikov, Pavel V. Gushchin, Matti Haukka, Ruslan E. Asfin, Peter M. Tolstoy, Vadim Yu. Kukushkin|2016|Phys.Chem.Chem.Phys.(PCCP)|18|14104|doi:10.1039/C6CP00861E
CCDC 1541820: Experimental Crystal Structure Determination
Related Article: Svetlana A. Katkova, Mikhail A. Kinzhalov, Peter M. Tolstoy, Alexander S. Novikov, Vadim P. Boyarskiy, Anastasiia Yu. Ananyan, Pavel V. Gushchin, Matti Haukka, Andrey A. Zolotarev, Alexander Yu. Ivanov, Semen S. Zlotsky, Vadim Yu. Kukushkin|2017|Organometallics|36|4145|doi:10.1021/acs.organomet.7b00569
CCDC 1029119: Experimental Crystal Structure Determination
Related Article: Alexander N. Chernyshev, Maria V. Chernysheva, Pipsa Hirva, Vadim Yu. Kukushkin, Matti Haukka|2015|Dalton Trans.|44|14523|doi:10.1039/C4DT03167A
CCDC 2040619: Experimental Crystal Structure Determination
Related Article: Eugene A. Katlenok, Anton V. Rozhkov, Oleg V. Levin, Matti Haukka, Maxim L. Kuznetsov, Vadim Yu. Kukushkin|2021|Cryst.Growth Des.|21|1159|doi:10.1021/acs.cgd.0c01474
CCDC 2040621: Experimental Crystal Structure Determination
Related Article: Eugene A. Katlenok, Anton V. Rozhkov, Oleg V. Levin, Matti Haukka, Maxim L. Kuznetsov, Vadim Yu. Kukushkin|2021|Cryst.Growth Des.|21|1159|doi:10.1021/acs.cgd.0c01474
CCDC 1509734: Experimental Crystal Structure Determination
Related Article: Daniil M. Ivanov, Mikhail A. Kinzhalov, Alexander S. Novikov, Ivan V. Ananyev, Anna A. Romanova, Vadim P. Boyarskiy, Matti Haukka, Vadim Yu. Kukushkin|2017|Cryst.Growth Des.|17|1353|doi:10.1021/acs.cgd.6b01754
CCDC 1029113: Experimental Crystal Structure Determination
Related Article: Alexander N. Chernyshev, Maria V. Chernysheva, Pipsa Hirva, Vadim Yu. Kukushkin, Matti Haukka|2015|Dalton Trans.|44|14523|doi:10.1039/C4DT03167A
CCDC 1435500: Experimental Crystal Structure Determination
Related Article: Mikhail A. Kinzhalov, Svetlana A. Timofeeva, Konstantin V. Luzyanin, Vadim P. Boyarskiy, Anton A. Yakimanskiy, Matti Haukka, Vadim Yu. Kukushkin|2016|Organometallics|35|218|doi:10.1021/acs.organomet.5b00936
CCDC 1435503: Experimental Crystal Structure Determination
Related Article: Mikhail A. Kinzhalov, Svetlana A. Timofeeva, Konstantin V. Luzyanin, Vadim P. Boyarskiy, Anton A. Yakimanskiy, Matti Haukka, Vadim Yu. Kukushkin|2016|Organometallics|35|218|doi:10.1021/acs.organomet.5b00936
CCDC 1029118: Experimental Crystal Structure Determination
Related Article: Alexander N. Chernyshev, Maria V. Chernysheva, Pipsa Hirva, Vadim Yu. Kukushkin, Matti Haukka|2015|Dalton Trans.|44|14523|doi:10.1039/C4DT03167A
CCDC 1435502: Experimental Crystal Structure Determination
Related Article: Mikhail A. Kinzhalov, Svetlana A. Timofeeva, Konstantin V. Luzyanin, Vadim P. Boyarskiy, Anton A. Yakimanskiy, Matti Haukka, Vadim Yu. Kukushkin|2016|Organometallics|35|218|doi:10.1021/acs.organomet.5b00936
CCDC 1009212: Experimental Crystal Structure Determination
Related Article: Xin Ding, Matti J. Tuikka, Pipsa Hirva, Vadim Yu. Kukushkin, Alexander S. Novikov, Matti Haukka|2016|CrystEngComm|18|1987|doi:10.1039/C5CE02396C
CCDC 1029125: Experimental Crystal Structure Determination
Related Article: Alexander N. Chernyshev, Maria V. Chernysheva, Pipsa Hirva, Vadim Yu. Kukushkin, Matti Haukka|2015|Dalton Trans.|44|14523|doi:10.1039/C4DT03167A
CCDC 1435505: Experimental Crystal Structure Determination
Related Article: Mikhail A. Kinzhalov, Svetlana A. Timofeeva, Konstantin V. Luzyanin, Vadim P. Boyarskiy, Anton A. Yakimanskiy, Matti Haukka, Vadim Yu. Kukushkin|2016|Organometallics|35|218|doi:10.1021/acs.organomet.5b00936
CCDC 1551262: Experimental Crystal Structure Determination
Related Article: Svetlana A. Katkova, Mikhail A. Kinzhalov, Peter M. Tolstoy, Alexander S. Novikov, Vadim P. Boyarskiy, Anastasiia Yu. Ananyan, Pavel V. Gushchin, Matti Haukka, Andrey A. Zolotarev, Alexander Yu. Ivanov, Semen S. Zlotsky, Vadim Yu. Kukushkin|2017|Organometallics|36|4145|doi:10.1021/acs.organomet.7b00569
CCDC 1029127: Experimental Crystal Structure Determination
Related Article: Alexander N. Chernyshev, Maria V. Chernysheva, Pipsa Hirva, Vadim Yu. Kukushkin, Matti Haukka|2015|Dalton Trans.|44|14523|doi:10.1039/C4DT03167A
CCDC 1009519: Experimental Crystal Structure Determination
Related Article: Pavel V. Gushchin, Maxim L. Kuznetsov, Matti Haukka, and Vadim Yu. Kukushkin|2014|J.Phys.Chem.A|118|9529|doi:10.1021/jp506256a