0000000000736808
AUTHOR
Henrik Jensen
Spatial variation in the evolutionary potential and constraints of basal metabolic rate and body mass in a wild bird
An organism's energy budget is strongly related to resource consumption, performance, and fitness. Hence, understanding the evolution of key energetic traits, such as basal metabolic rate (BMR), in natural populations is central for understanding life-history evolution and ecological processes. Here we used quantitative genetic analyses to study evolutionary potential of BMR in two insular populations of the house sparrow (Passer domesticus). We obtained measurements of BMR and body mass (Mb) from 911 house sparrows on the islands of Leka and Vega along the coast of Norway. These two populations were the source populations for translocations to create an additional third, admixed ‘common ga…
Data from: Multiple aspects of plasticity in clutch size vary among populations of a globally distributed songbird
1. Plasticity in life-history characteristics can influence many ecological and evolutionary phenomena, including how invading organisms cope with novel conditions in new locations or how environmental change affects organisms in native locations. Variation in reaction norm attributes is a critical element to understanding plasticity in life history, yet we know relatively little about the ways in which reaction norms vary within and among populations. 2. We amassed data on clutch size from marked females in eight populations of house sparrows (Passer domesticus) from North America and Europe. We exploited repeated measures of clutch size to assess both the extent of within-individual pheno…