0000000000740541

AUTHOR

Binghai Yan

showing 12 related works from this author

Topological Insulators from a Chemist's Perspective

2012

Topology and chemistry are deeply entangled subjects, whichmanifests in the way chemists like to think and approachproblems. Although not at first glance, topology allows thecategorizationoffundamentalinherentpropertiesofthehugenumber of different chemical compounds, carving out theunique features of a class of materials of different complexity,a topic which Turro worked out in his treatise on geometricaland topological thinking in chemistry.

Inorganic ChemistryClass (set theory)Perspective (geometry)CarvingMaterials scienceCondensed matter physicsTopological insulatorChemistry (relationship)ChemistTopology (chemistry)EpistemologyZeitschrift für anorganische und allgemeine Chemie
researchProduct

Topological Insulators from a Chemist’s Perspective

2012

Topology and chemistry are deeply entangled subjects, whichmanifests in the way chemists like to think and approachproblems. Although not at first glance, topology allows thecategorizationoffundamentalinherentpropertiesofthehugenumber of different chemical compounds, carving out theunique features of a class of materials of different complexity,a topic which Turro worked out in his treatise on geometricaland topological thinking in chemistry.

Class (set theory)Perspective (geometry)CarvingChemical physicsTopological insulatorGeneral MedicineGeneral ChemistryChemistry (relationship)ChemistCatalysisTopology (chemistry)EpistemologyAngewandte Chemie International Edition
researchProduct

Topological insulators in filled skutterudites

2011

We propose new topological insulators in cerium filled skutterudite (FS) compounds based on ab initio calculations. We find that two compounds CeOs4As12 and CeOs4Sb12 are zero gap materials with band inversion between Os-d and Ce-f orbitals, which are thus parent compounds of two and three-dimensional topological insulators just like bulk HgTe. At low temperature, both compounds become topological Kondo insulators, which are Kondo insulators in the bulk, but have robust Dirac surface states on the boundary. This new family of topological insulators has two advantages compared to previous ones. First, they can have good proximity effect with other superconducting FS compounds to realize Maja…

PhysicsCondensed Matter - Materials ScienceCondensed matter physicsKondo insulatorLattice (group)Materials Science (cond-mat.mtrl-sci)FOS: Physical sciencesFermionCondensed Matter PhysicsElectronic Optical and Magnetic Materialssymbols.namesakeDirac fermionTopological insulatorProximity effect (superconductivity)symbolsTopological orderCondensed Matter::Strongly Correlated ElectronsCharge transfer insulatorsPhysical Review B
researchProduct

Prediction of Weak Topological Insulators in Layered Semiconductors

2012

We report the discovery of weak topological insulators by ab initio calculations in a honeycomb lattice. We propose a structure with an odd number of layers in the primitive unit-cell as a prerequisite for forming weak topological insulators. Here, the single-layered KHgSb is the most suitable candidate for its large bulk energy gap of 0.24 eV. Its side surface hosts metallic surface states, forming two anisotropic Dirac cones. Though the stacking of even-layered structures leads to trivial insulators, the structures can host a quantum spin Hall layer with a large bulk gap, if an additional single layer exists as a stacking fault in the crystal. The reported honeycomb compounds can serve as…

Condensed Matter - Materials ScienceMaterials scienceStrongly Correlated Electrons (cond-mat.str-el)Condensed matter physicsbusiness.industryBand gapMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and AstronomyPrimitive cell02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesCondensed Matter - Strongly Correlated ElectronsSemiconductorTopological insulator0103 physical sciencesTopological orderCondensed Matter::Strongly Correlated ElectronsCharge transfer insulators010306 general physics0210 nano-technologybusinessSurface statesStacking faultPhysical Review Letters
researchProduct

Topological insulators and thermoelectric materials

2012

Topological insulators (TIs) are a new quantum state of matter which have gapless surface states inside the bulk energy gap. Starting with the discovery of two dimensional TIs, the HgTe-based quantum wells, many new topological materials have been theoretically predicted and experimentally observed. Currently known TI materials can possibly be classified into two families, the HgTe family and the Bi2Se family. The signatures found in the electronic structure of a TI also cause these materials to be excellent thermoelectric materials. On the other hand, excellent thermoelectric materials can be also topologically trivial. Here we present a short introduction to topological insulators and the…

Materials scienceGapless playbackCondensed matter physicsQuantum stateBand gapTopological insulatorThermoelectric effectCondensed Matter::Strongly Correlated ElectronsGeneral Materials ScienceElectronic structureCondensed Matter PhysicsThermoelectric materialsQuantum wellphysica status solidi (RRL) - Rapid Research Letters
researchProduct

Topological Hamiltonian as an exact tool for topological invariants

2012

We propose the concept of `topological Hamiltonian' for topological insulators and superconductors in interacting systems. The eigenvalues of topological Hamiltonian are significantly different from the physical energy spectra, but we show that topological Hamiltonian contains the information of gapless surface states, therefore it is an exact tool for topological invariants.

PhysicsSuperconductivityHigh Energy Physics - TheoryStrongly Correlated Electrons (cond-mat.str-el)FOS: Physical sciencesCondensed Matter PhysicsTopology01 natural sciences010305 fluids & plasmassymbols.namesakeCondensed Matter - Strongly Correlated ElectronsGapless playbackHigh Energy Physics - Theory (hep-th)Topological insulator0103 physical sciencessymbolsTopological invariantsGeneral Materials Science010306 general physicsHamiltonian (quantum mechanics)Mathematics::Symplectic GeometryEigenvalues and eigenvectorsJournal of Physics Condensed Matter
researchProduct

Lattice Instability and Competing Spin Structures in the Double Perovskite InsulatorSr2FeOsO6

2013

The semiconductor Sr2FeOsO6, depending on temperature, adopts two types of spin structures that differ in the spin sequence of ferrimagnetic iron-osmium layers along the tetragonal c axis. Neutron powder diffraction experiments, 57Fe Mossbauer spectra, and density functional theory calculations suggest that this behavior arises because a lattice instability resulting in alternating iron-osmium distances fine-tunes the balance of competing exchange interactions. Thus, Sr2FeOsO6 is an example of a double perovskite, in which the electronic phases are controlled by the interplay of spin, orbital, and lattice degrees of freedom.

Materials scienceSpin polarizationMössbauer effectCondensed matter physicsbusiness.industryGeneral Physics and AstronomyInstabilityCondensed Matter::Materials ScienceTetragonal crystal systemSemiconductorFerrimagnetismLattice (order)Condensed Matter::Strongly Correlated ElectronsDensity functional theorybusinessPhysical Review Letters
researchProduct

Lattice-Site-Specific Spin Dynamics in Double PerovskiteSr2CoOsO6

2014

Magnetic properties and spin dynamics have been studied for the structurally ordered double perovskite Sr2CoOsO6. Neutron diffraction, muon-spin relaxation, and ac-susceptibility measurements reveal two antiferromagnetic (AFM) phases on cooling from room temperature down to 2 K. In the first AFM phase, with transition temperature TN1=108  K, cobalt (3d7, S=3/2) and osmium (5d2, S=1) moments fluctuate dynamically, while their average effective moments undergo long-range order. In the second AFM phase below TN2=67  K, cobalt moments first become frozen and induce a noncollinear spin-canted AFM state, while dynamically fluctuating osmium moments are later frozen into a randomly canted state at…

Materials scienceSpin dynamicsCondensed matter physicsTransition temperatureNeutron diffractionGeneral Physics and Astronomychemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesCondensed Matter::Materials Sciencechemistry.chemical_compoundchemistryLattice (order)0103 physical sciencesAntiferromagnetismCondensed Matter::Strongly Correlated ElectronsOsmium010306 general physics0210 nano-technologyCobaltAFm phasePhysical Review Letters
researchProduct

Topological Insulators in Ternary Compounds with a Honeycomb Lattice

2010

One of the most exciting subjects in solid state physics is a single layer of graphite which exhibits a variety of unconventional novel properties. The key feature of its electronic structure are linear dispersive bands which cross in a single point at the Fermi energy. This so-called Dirac cone is closely related to the surface states of the recently discovered topological insulators. The ternary compounds, such as LiAuSe and KHgSb with a honeycomb structure of their Au-Se and Hg-Sb layers feature band inversion very similar to HgTe which is a strong precondition for existence of the topological surface states. In contrast to graphene with two Dirac cones at K and K' points, these material…

PhysicsCondensed Matter - Materials ScienceCondensed matter physicsBand gapGeneral Physics and AstronomyMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesHoneycomb structureLattice (order)Topological insulatorTopological orderDirect and indirect band gapsTernary operationSurface states
researchProduct

A large-energy-gap oxide topological insulator based on the superconductor BaBiO3

2013

Mixed-valent perovskite oxides based on BaBiO3 (BBO) are, like cuperates, well-known high-Tc superconductors. Recent ab inito calculations have assigned the high-Tc superconductivity to a correlation-enhanced electron--phonon coupling mechanism, stimulating the prediction and synthesis of new superconductor candidates among mixed-valent thallium perovskites. Existing superconductivity has meant that research has mainly focused on hole-doped compounds, leaving electron-doped compounds relatively unexplored. Here we demonstrate through ab inito calculations that BBO emerges as a topological insulator (TI) in the electron-doped region, where the spin-orbit coupling (SOC) effect is significant.…

Band gapTopological degeneracyAb initioOxideGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technology01 natural sciencesSuperconductivity (cond-mat.supr-con)Condensed Matter::Materials Sciencechemistry.chemical_compoundCondensed Matter::Superconductivity0103 physical sciencesTopological orderPhysics::Chemical Physics010306 general physicsCondensed Matter::Quantum GasesPhysicsSuperconductivityCondensed Matter - Materials ScienceCondensed matter physicsCondensed Matter - SuperconductivityDopingMaterials Science (cond-mat.mtrl-sci)021001 nanoscience & nanotechnologychemistryTopological insulatorCondensed Matter::Strongly Correlated Electrons0210 nano-technologyNature Physics
researchProduct

Topological insulators and thermoelectric materials

2012

Topological insulators (TIs) are a new quantum state of matter which have gapless surface states inside the bulk energy gap. Starting with the discovery of two dimensional TIs, the HgTe-based quantum wells, many new topological materials have been theoretically predicted and experimentally observed. Currently known TI materials can possibly be classified into two families, the HgTe family and the Bi2Se family. The signatures found in the electronic structure of a TI also cause these materials to be excellent thermoelectric materials. On the other hand, excellent thermoelectric materials can be also topologically trivial. Here we present a short introduction to topological insulators and the…

Condensed Matter - Materials ScienceMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesCondensed Matter::Strongly Correlated Electrons
researchProduct

Lattice Instability and Competing Spin Structures in the Double Perovskite Insulator Sr2FeOsO6

2013

The semiconductor Sr2FeOsO6, depending on temperature, adopts two types of spin structures that differ in the spin sequence of ferrimagnetic iron - osmium layers along the tetragonal c-axis. Neutron powder diffraction experiments, 57Fe M\"ossbauer spectra, and density-functional theory calculations suggest that this behavior arises because a lattice instability resulting in alternating iron-osmium distances fine-tunes the balance of competing exchange interactions. Thus, Sr2FeOsO6 is an example for a double perovskite, in which the electronic phases are controlled by the interplay of spin, orbital, and lattice degrees of freedom.

Condensed Matter - Materials ScienceCondensed Matter - Strongly Correlated ElectronsCondensed Matter::Materials ScienceStrongly Correlated Electrons (cond-mat.str-el)Materials Science (cond-mat.mtrl-sci)FOS: Physical sciencesCondensed Matter::Strongly Correlated Electrons
researchProduct