0000000000741537
AUTHOR
Luciano Bollaci
Electrochemical Quantification of H2O2 Released by Airway Cells Growing in Different Culture Media
Quantification of oxidative stress is a challenging task that can help in monitoring chronic inflammatory respiratory airway diseases. Different studies can be found in the literature regarding the development of electrochemical sensors for H2O2 in cell culture medium to quantify oxidative stress. However, there are very limited data regarding the impact of the cell culture medium on the electrochemical quantification of H2O2. In this work, we studied the effect of different media (RPMI, MEM, DMEM, Ham’s F12 and BEGM/DMEM) on the electrochemical quantification of H2O2. The used electrode is based on reduced graphene oxide (rGO) and gold nanoparticles (AuNPs) and was obtained by co-electrode…
Electrochemical sensor for evaluating oxidative stress in airway epithelial cells
Cigarette smoke exposure induces oxidative stress within the airways. Increased oxidative burden contributes to the pathogenesis of chronic lung disorders and is associated with aging and chronic inflammation. Airway epithelial cells highly contribute to Reactive Oxygen Species (ROS) generation within injured and inflamed lung tissues. Among ROS, hydrogen peroxide (H2O2) can be monitored in the extracellular space. Herein, we present an amperometric/voltammetric sensor based on gold nanoparticles and graphene oxide able to detect H2O2 with good sensitivity and selectivity. Using this sensor, H2O2 release was measured in conditioned medium from primary bronchial epithelial cells (PBEC), bron…