0000000000744475

AUTHOR

Melita B. Mirone

showing 3 related works from this author

Corrigendum to “Anticonvulsant effects of carbenoxolone in genetically epilepsy prone rats (GEPRs)”[Neuropharmacology 47 (2004) 1205-1216]

2009

Pharmacologybusiness.industrymedicine.medical_treatmentCarbenoxolonePharmacologymedicine.diseaseCellular and Molecular NeuroscienceEpilepsyAnticonvulsantmedicinebusinessNeuroscienceNeuropharmacologymedicine.drugNeuropharmacology
researchProduct

Connexin-30 mRNA Is Up-Regulated in Astrocytes and Expressed in Apoptotic Neuronal Cells of Rat Brain Following Kainate-Induced Seizures

2002

Glial connexins (Cxs) make an extensively interconnected functional syncytium created by a network of gap junctions between astrocytes and oligodendrocytes. Among Cxs expressed in the brain, Cx30 is expressed in grey matter astrocytes, as shown at the protein level by immunoistochemistry. In the present study we aimed to perform a detailed study of the regional distribution of Cx30 mRNA in the adult and postnatal developing rat brain, analyzing its expression by in situ hybridization, and determining its cell type localization by double labeling. Recently, it has been suggested that neuronal activity may control the level of intercellular communication between astrocytes through gap junctio…

MaleAgingCell typeGene ExpressionConnexinApoptosisKainate receptorCell CommunicationIn situ hybridizationGrey matterBiologyConnexinsCellular and Molecular NeuroscienceStatus EpilepticusSeizuresExcitatory Amino Acid AgonistsmedicineAnimalsPremovement neuronal activityRNA MessengerRats WistarMolecular BiologyNeuronsSyncytiumKainic AcidGap junctionBrainCell BiologyImmunohistochemistryRatsUp-RegulationCell biologymedicine.anatomical_structureAnimals NewbornAstrocytesNeuroscienceMolecular and Cellular Neuroscience
researchProduct

Cellular expression of connexins in the rat brain: neuronal localization, effects of kainate-induced seizures and expression in apoptotic neuronal ce…

2003

The identification of connexins (Cxs) expressed in neuronal cells represents a crucial step for understanding the direct communication between neurons and between neuron and glia. In the present work, using a double-labelling method combining in situ hybridization for Cx mRNAs with immunohistochemical detection for neuronal markers, we provide evidence that, among cerebral connexins (Cx26, Cx32, Cx36, Cx37, Cx40, Cx43, Cx45 and Cx47), only Cx45 and Cx36 mRNAs are localized in neuronal cells in both developing and adult rat brain. In order to establish whether connexin expression is influenced in vivo by abnormal neuronal activity, we examined the short-term effects of kainate-induced seizur…

MaleAgingTime FactorsgliaHippocampusConnexinbrain developmentKainate receptorApoptosisIn situ hybridizationBiologyConnexinsgap junctionbrain development; gap junction; gliaSeizuresTubulinmedicineExcitatory Amino Acid AgonistsIn Situ Nick-End LabelingPremovement neuronal activityAnimalsRNA MessengerOrganic ChemicalsRats WistarIn Situ HybridizationFluorescent DyesNeuronsMessenger RNAKainic AcidReverse Transcriptase Polymerase Chain ReactionGeneral NeuroscienceGap junctionBrainGene Expression Regulation DevelopmentalFluoresceinsImmunohistochemistryCell biologyRatsmedicine.anatomical_structurenervous systemAnimals NewbornPhosphopyruvate HydrataseAutoradiographysense organsNeuronNeuroscienceDensitometryThe European journal of neuroscience
researchProduct