0000000000744799

AUTHOR

G. Tourbot

showing 2 related works from this author

The structural properties of GaN/AlN core-shell nanocolumn heterostructures.

2010

International audience; The growth and structural properties of GaN/AlN core-shell nanowire heterostructures have been studied using a combination of resonant x-ray diffraction, Raman spectroscopy and high resolution transmission electron microscopy experiments. For a GaN core of 20 nm diameter on average surrounded by a homogeneous AlN shell, the built-in strain in GaN is found to agree with theoretical calculations performed using a valence force field model. It is then concluded that for an AlN thickness up to at least 12 nm both core and shell are in elastic equilibrium. However, in the case of an inhomogeneous growth of the AlN shell caused by the presence of steps on the sides of the …

Materials scienceNanowireShell (structure)Bioengineering02 engineering and technology01 natural sciencessymbols.namesake0103 physical sciencesGeneral Materials ScienceElectrical and Electronic EngineeringHigh-resolution transmission electron microscopy010302 applied physicsCondensed matter physicsbusiness.industryMechanical EngineeringHeterojunctionGeneral Chemistry[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnologyCrystallographic defectCore (optical fiber)Mechanics of MaterialsTransmission electron microscopysymbolsOptoelectronics0210 nano-technologyRaman spectroscopybusinessNanotechnology
researchProduct

Growth, structural and optical properties of GaN/AlN and GaN/GaInN nanowire heterostructures

2012

Abstract After discussing the GaN NW nucleation issue, we will present the structural properties of axial and radial (i.e. core/shell) GaN/AlN NW heterostructures and adress the issue of critical thickness during the growth of such heterostructures. Next, we will present the growth of InGaN NWs on a GaN NW base. It will be shown that the morphology and structural properties of the InGaN NW sections depend on the In content: for high In content a flat top is observed and plastic relaxation is occuring, with mismatch dislocations formed at the InGaN/GaN interface. By contrast, for In content below 25% InGaN NWs exhibit a pencil-like shape assigned to a purely elastic strain relaxation process…

Materials sciencePhotoluminescencebusiness.industryRelaxation (NMR)NucleationNanowireShell (structure)HeterojunctionPhysics and Astronomy(all)Xrays diffractionsymbols.namesakenanowiresmolecular beam epitaxyRaman spectroscopysymbolsIII nitride wide gap semiconductorsOptoelectronicsphotoluminescencebusinessRaman spectroscopyhigh resolution electron microscopyMolecular beam epitaxyPhysics Procedia
researchProduct