0000000000745516

AUTHOR

G Sáez-tormo

showing 1 related works from this author

Aplidin® induces JNK-dependent apoptosis in human breast cancer cells via alteration of glutathione homeostasis, Rac1 GTPase activation, and MKP-1 ph…

2006

Aplidin® is an antitumor agent in phase II clinical trials that induces apoptosis through the sustained activation of Jun N-terminal kinase (JNK). We report that Aplidin® alters glutathione homeostasis increasing the ratio of oxidized to reduced forms (GSSG/GSH). Aplidin® generates reactive oxygen species and disrupts the mitochondrial membrane potential. Exogenous GSH inhibits these effects and also JNK activation and cell death. We found two mechanisms by which Aplidin® activates JNK: rapid activation of Rac1 small GTPase and downregulation of MKP-1 phosphatase. Rac1 activation was diminished by GSH and enhanced by L-buthionine (SR)-sulfoximine, which inhibits GSH synthesis. Downregulatio…

rac1 GTP-Binding ProteinProgrammed cell deathSmall interfering RNAGlutathione reductaseDown-RegulationAntineoplastic AgentsApoptosisBreast NeoplasmsCell Cycle ProteinsBiologyPeptides CyclicImmediate-Early ProteinsMembrane Potentialschemistry.chemical_compoundMiceDownregulation and upregulationDepsipeptidesProtein Phosphatase 1Phosphoprotein PhosphatasesAnimalsHomeostasisHumansMolecular Biologychemistry.chemical_classificationReactive oxygen speciesGlutathione PeroxidaseGlutathione DisulfideJNK Mitogen-Activated Protein KinasesProtein phosphatase 1Dual Specificity Phosphatase 1Cell BiologyGlutathioneCell biologyEnzyme ActivationOxidative StressGlutathione ReductasechemistryMitochondrial MembranesGlutathione disulfideCalciumProtein Tyrosine PhosphatasesReactive Oxygen SpeciesCopperHeLa CellsCell Death and Differentiation
researchProduct