0000000000745532

AUTHOR

Jiecheng Yang

showing 5 related works from this author

Systematic analysis of the peripherality of the Be10(d,p)Be11 transfer reaction and extraction of the asymptotic normalization coefficient of Be11 bo…

2018

We reanalyze the experiment of Schmitt et al. on the $^{10}\mathrm{Be}(d,p)^{11}\mathrm{Be}$ transfer reaction [Phys. Rev. Lett. 108, 192701 (2012)] by exploring the beam-energy and angular ranges at which the reaction is strictly peripheral. We consider the adiabatic distorted wave approximation (ADWA) to model the reaction and use a Halo-EFT description of $^{11}\mathrm{Be}$ to systematically explore the sensitivity of our calculations to the short-range physics of the $^{10}\mathrm{Be}\ensuremath{-}n$ wave function. We find that by selecting the data at low beam energy and forward scattering angle the calculated cross sections scale nearly perfectly with the asymptotic normalization coef…

Physics010308 nuclear & particles physicsAb initio quantum chemistry methodsExcited state0103 physical sciencesBound stateAtomic physics010306 general physicsWave function01 natural sciencesBeam energyNuclear theoryPhysical Review C
researchProduct

C15 : From halo effective field theory structure to the study of transfer, breakup, and radiative-capture reactions

2019

Background: Aside from being a one-neutron halo nucleus, $^{15}\mathrm{C}$ is interesting because it is involved in reactions of relevance for several nucleosynthesis scenarios.Purpose: The aim of this work is to analyze various reactions involving $^{15}\mathrm{C}$, using a single structure model based on halo effective field theory (halo EFT) following the excellent results obtained in [P. Capel et al., Phys. Rev. C 98, 034610 (2018)].Method: To develop a halo-EFT model of $^{15}\mathrm{C}$ at next to leading order (NLO), we first extract the asymptotic normalization coefficient (ANC) of its ground state by analyzing $^{14}\mathrm{C}(d,p)^{15}\mathrm{C}$ transfer data at low energy using …

Physics010308 nuclear & particles physicsBinding energyOrder (ring theory)Halo nucleus01 natural sciences0103 physical sciencesEffective field theoryCoulombAtomic physicsNuclear Experiment010306 general physicsNucleonGround stateEnergy (signal processing)Physical Review C
researchProduct

From Halo Effective Field Theory to the study of breakup and transfer reactions: reliably probing the halo structure of 11 Be and 15 C

2020

Abstract In this work we study one-neutron halo nuclei, and in particular 11Be and 15C, which can be seen as an inert core of 10Be or 14C plus a loosely bound neutron. During the last decades several transfer and breakup reactions involving these systems have been measured on different targets and energies. We study these processes using one single structure model for each nucleus applying the halo effective field theory (Halo EFT) at next-to-leading order NLO. The main parameters of this EFT are adjusted on nuclear-structure data and/or ab initio predictions. We model the transfer reaction within the Adiabatic Distorted Wave Approximation (ADWA) and the breakup process applying an eikonal …

PhysicsHistoryEikonal equationObservableBreakup7. Clean energyPhysique atomique et nucléaireComputer Science ApplicationsEducationNuclear physicsEffective field theoryCoulombNeutronHaloAdiabatic processJournal of Physics: Conference Series
researchProduct

First Exploration of Neutron Shell Structure below Lead and beyond N=126

2020

The nuclei below lead but with more than 126 neutrons are crucial to an understanding of the astrophysical r process in producing nuclei heavier than A∼190. Despite their importance, the structure and properties of these nuclei remain experimentally untested as they are difficult to produce in nuclear reactions with stable beams. In a first exploration of the shell structure of this region, neutron excitations in ^{207}Hg have been probed using the neutron-adding (d,p) reaction in inverse kinematics. The radioactive beam of ^{206}Hg was delivered to the new ISOLDE Solenoidal Spectrometer at an energy above the Coulomb barrier. The spectroscopy of ^{207}Hg marks a first step in improving our…

PhysicsNuclear reactionSpectrometerSolenoidal vector fieldNuclear TheoryGeneral Physics and AstronomyCoulomb barrier01 natural sciencesNuclear physicsLead (geology)0103 physical sciencesr-processPhysics::Accelerator PhysicsNeutron010306 general physicsSpectroscopyNuclear Experimentydinfysiikka
researchProduct

$^{15}$C: from Halo-EFT structure to the study of transfer, breakup and radiative-capture reactions

2019

Aside from being a one-neutron halo nucleus, $^{15}$C is interesting because it is involved in reactions of relevance for several nucleosynthesis scenarios. The aim of this work is to analyze various reactions involving $^{15}$C, using a single structure model based on Halo EFT. To develop a Halo-EFT model of $^{15}$C at NLO, we first extract the ANC of its ground state by analyzing $^{14}$C(d,p)$^{15}$C transfer data at low energy. Using this Halo-EFT description, we study the $^{15}$C Coulomb breakup at high (605AMeV) and intermediate (68AMeV) energies using eikonal models with a consistent treatment of nuclear and Coulomb interactions at all orders, and proper relativistic corrections. F…

Nuclear Theory (nucl-th)Nuclear TheoryFOS: Physical sciences
researchProduct