0000000000746284

AUTHOR

Charusheela Ramanan

showing 6 related works from this author

Strongly Red-Emissive Molecular Ruby [Cr(bpmp)2]3+ Surpasses [Ru(bpy)3]2+

2021

Gaining chemical control over the thermodynamics and kinetics of photoexcited states is paramount to an efficient and sustainable utilization of photoactive transition metal complexes in a plethora of technologies. In contrast to energies of charge transfer states described by spatially separated orbitals, the energies of spin-flip states cannot straightforwardly be predicted as Pauli repulsion and the nephelauxetic effect play key roles. Guided by multireference quantum chemical calculations, we report a novel highly luminescent spin-flip emitter with a quantum chemically predicted blue-shifted luminescence. The spin-flip emission band of the chromium complex [Cr(bpmp)2]3+ (bpmp = 2,6-bis(…

Nephelauxetic effectPhotoluminescenceQuenching (fluorescence)ChemistryQuantum yieldGeneral ChemistryPhotochemistryBiochemistryCatalysisColloid and Surface ChemistryAtomic orbitalExcited stateLuminescenceGround stateJournal of the American Chemical Society
researchProduct

Experimental Observation of Strong Exciton Effects in Graphene Nanoribbons

2019

Graphene nanoribbons (GNRs) with atomically precise width and edge structures are a promising class of nanomaterials for optoelectronics, thanks to their semiconducting nature and high mobility of charge carriers. Understanding the fundamental static optical properties and ultrafast dynamics of charge carrier generation in GNRs is essential for optoelectronic applications. Combining THz spectroscopy and theoretical calculations, we report a strong exciton effect with binding energy up to 700 meV in liquid-phase-dispersed GNRs with a width of 1.7 nm and an optical bandgap of 1.6 eV, illustrating the intrinsically strong Coulomb interactions between photogenerated electrons and holes. By trac…

Materials scienceLetter530 PhysicsBand gapExcitonExciton binding energyBinding energyFOS: Physical sciencesPhysics::OpticsBioengineering02 engineering and technologyElectronNanomaterialsCondensed Matter::Materials ScienceMesoscale and Nanoscale Physics (cond-mat.mes-hall)General Materials ScienceExciton formationCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryMechanical EngineeringGraphene nanoribbonsGeneral Chemistry530 Physik021001 nanoscience & nanotechnologyCondensed Matter PhysicsTHz spectroscopyOptoelectronicsCharge carrierExcitons0210 nano-technologybusinessUltrashort pulseGraphene nanoribbonsOptics (physics.optics)Physics - Optics
researchProduct

Role of pH in the synthesis and growth of gold nanoparticles using L-asparagine: a combined experimental and simulation study

2020

Abstract The use of biomolecules as capping and reducing agents in the synthesis of metallic nanoparticles constitutes a promising framework to achieve desired functional properties with minimal toxicity. The system’s complexity and the large number of variables involved represent a challenge for theoretical and experimental investigations aiming at devising precise synthesis protocols. In this work, we use L-asparagine (Asn), an amino acid building block of large biomolecular systems, to synthesise gold nanoparticles (AuNPs) in aqueous solution at controlled pH. The use of Asn offers a primary system that allows us to understand the role of biomolecules in synthesising metallic nanoparticl…

chemistry.chemical_classificationAqueous solutionBiomoleculeMetal NanoparticlesWaterNanoparticle02 engineering and technologyHydrogen-Ion Concentration021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesMolecular dynamicsAdsorptionchemistryChemical engineeringColloidal gold0103 physical sciencesMonolayerMoleculeGeneral Materials ScienceGoldAsparagine010306 general physics0210 nano-technologyJournal of Physics: Condensed Matter
researchProduct

CCDC 1989536: Experimental Crystal Structure Determination

2021

Related Article: Florian Reichenauer, Cui Wang, Christoph Förster, Pit Boden, Naz Ugur, Ricardo Báez-Cruz, Jens Kalmbach, Luca M. Carrella, Eva Rentschler, Charusheela Ramanan, Gereon Niedner-Schatteburg, Markus Gerhards, Michael Seitz, Ute Resch-Genger, Katja Heinze|2021|J.Am.Chem.Soc.|143|11843|doi:10.1021/jacs.1c05971

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters{22'-[(pyridine-26-diyl)bis(methylene)]bis(pyridine)}-tris(trifluoromethanesulfonato)-chromium(iii) acetonitrile solvateExperimental 3D Coordinates
researchProduct

CCDC 2083757: Experimental Crystal Structure Determination

2021

Related Article: Florian Reichenauer, Cui Wang, Christoph Förster, Pit Boden, Naz Ugur, Ricardo Báez-Cruz, Jens Kalmbach, Luca M. Carrella, Eva Rentschler, Charusheela Ramanan, Gereon Niedner-Schatteburg, Markus Gerhards, Michael Seitz, Ute Resch-Genger, Katja Heinze|2021|J.Am.Chem.Soc.|143|11843|doi:10.1021/jacs.1c05971

Space GroupCrystallographyCrystal Systemmer-bis(22'-[pyridine-26-diylbis(methylene)]dipyridine)-chromium(iii) tris(tetrafluoroborate) acetonitrile solvateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1989537: Experimental Crystal Structure Determination

2021

Related Article: Florian Reichenauer, Cui Wang, Christoph Förster, Pit Boden, Naz Ugur, Ricardo Báez-Cruz, Jens Kalmbach, Luca M. Carrella, Eva Rentschler, Charusheela Ramanan, Gereon Niedner-Schatteburg, Markus Gerhards, Michael Seitz, Ute Resch-Genger, Katja Heinze|2021|J.Am.Chem.Soc.|143|11843|doi:10.1021/jacs.1c05971

bis{22'-[(pyridine-26-diyl)bis(methylene)]bis(pyridine)}-chromium(iii) tris(trifluoromethanesulfonate) ethanol solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct