0000000000752082

AUTHOR

F. Mannucci

showing 3 related works from this author

Cavezzo, the first Italian meteorite recovered by the PRISMA fireball network. Orbit, trajectory, and strewn-field

2020

ABSTRACT Two meteorite pieces have been recovered in Italy, near the town of Cavezzo (Modena), on 2020 January 4th. The associated fireball was observed on the evening of New Year’s Day 2020 by eight all-sky cameras of the PRISMA fireball network, a partner of FRIPON. The computed trajectory had an inclination angle of approximately 68° and a velocity at infinity of 12.8 km s−1. Together with the relatively low terminal height, estimated as 21.5 km, those values were indicating the significant possibility of a meteorite dropping event, as additionally confirmed by the non-zero residual total mass. The strewn-field was computed taking into account the presence of two bright light flashes, re…

meteoroids -methods: data analysis -techniques: image processing010502 geochemistry & geophysics01 natural sciencesStrewn fieldmeteorites0103 physical sciencesmeteorsmeteoroids010303 astronomy & astrophysicsmeteoroid0105 earth and related environmental sciencesPhysicsMeteoroidimage processing; meteorites; meteoroids; meteors; methods: data analysis; techniquesmeteorAstronomyAstronomy and Astrophysicsmethods: data analysismeteoriteimage processingMeteoriteSpace and Planetary Science[SDU]Sciences of the Universe [physics]data analysi [methods]TrajectoryOrbit (control theory)techniques
researchProduct

Are long gamma-ray bursts biased tracers of star formation? Clues from the host galaxies of the Swift/BAT6 complete sample of LGRBs

2015

Aims: Long gamma-ray bursts (LGRBs) are associated with massive stars and are therefore linked to star formation. However, the conditions needed for the progenitor stars to produce LGRBs can affect the relation between the LGRB rate and star formation. By using the power of a complete LGRB sample, our long-term aim is to understand whether such a bias exists and, if it does, what its origin is. Methods: To reach our goal we use the Swift/BAT6 complete sample of LGRBs. In this first paper, we build the spectral energy distribution (SED) of the 14 z ⋆) from SED fitting. To investigate the presence of a bias in the LGRB-star formation relation we compare the stellar mass distribution of the LG…

Stellar massMetallicityAstrophysics::High Energy Astrophysical PhenomenaPopulationgamma-ray burst: generalAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciences0103 physical sciencesAstrophysics::Solar and Stellar Astrophysicseducation010303 astronomy & astrophysicsQCAstrophysics::Galaxy AstrophysicsQBPhysicseducation.field_of_study010308 nuclear & particles physicsStar formationAstronomy and AstrophysicsGalaxyStarsgalaxies: photometrySpace and Planetary Sciencegalaxies: star formationSpectral energy distributionAstrophysics::Earth and Planetary AstrophysicsGamma-ray burst[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

FRIPON: a worldwide network to track incoming meteoroids

2020

Context. Until recently, camera networks designed for monitoring fireballs worldwide were not fully automated, implying that in case of a meteorite fall, the recovery campaign was rarely immediate. This was an important limiting factor as the most fragile - hence precious - meteorites must be recovered rapidly to avoid their alteration. Aims. The Fireball Recovery and InterPlanetary Observation Network (FRIPON) scientific project was designed to overcome this limitation. This network comprises a fully automated camera and radio network deployed over a significant fraction of western Europe and a small fraction of Canada. As of today, it consists of 150 cameras and 25 European radio receiver…

DYNAMICS[INFO.INFO-AR]Computer Science [cs]/Hardware Architecture [cs.AR]MeteorsComputer scienceRadio receiver[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]Surveys010502 geochemistry & geophysicsTrack (rail transport)01 natural sciencesMeteorites meteors meteoroidslaw.inventionPlanets and planetary system[INFO.INFO-TS]Computer Science [cs]/Signal and Image ProcessingMethods: observationallaw[INFO.INFO-RB]Computer Science [cs]/Robotics [cs.RO]meteoroids010303 astronomy & astrophysicsComputingMilieux_MISCELLANEOUSObservational methodsEarth and Planetary Astrophysics (astro-ph.EP)meteoroids -surveys -methods: observational -interplanetary medium[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]ORIGIN[INFO.INFO-AO]Computer Science [cs]/Computer Arithmeticmeteorites meteors meteoroids – surveys – methods: observational – interplanetary mediumMeteoroidsRECOVERYORBITMeteoriteFully automatedInterplanetary medium; Meteorites meteors meteoroids; Methods: observational; Surveys[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV][INFO.INFO-DC]Computer Science [cs]/Distributed Parallel and Cluster Computing [cs.DC]Astrophysics - Instrumentation and Methods for Astrophysics[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingFLUXReal-time computingfripon[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS]FOS: Physical sciencesContext (language use)CAMERA[INFO.INFO-SE]Computer Science [cs]/Software Engineering [cs.SE][SPI.AUTO]Engineering Sciences [physics]/Automatic[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology0103 physical sciencesFIREBALL NETWORKobservational [Methods]meteorsInstrumentation and Methods for Astrophysics (astro-ph.IM)0105 earth and related environmental sciencesMeteoroidINNISFREE METEORITE[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]Astronomy and AstrophysicsMETEORITE FALLMeteorites meteors meteoroidCamera networkSpace and Planetary Science[SDU]Sciences of the Universe [physics]Interplanetary spaceflightmeteroids trackingmeteoroids - surveys - methods: observationalSYSTEMInterplanetary mediumAstrophysics - Earth and Planetary AstrophysicsMeteorites
researchProduct