0000000000752612

AUTHOR

Jean Gruenberg

Generation of proteoliposomes from subcellular fractions.

Intracellular membranes are highly dynamic, yet they retain their identity and functional characteristics. Integral membrane proteins, which must confer this specific membrane identity, remain poorly characterized at the biochemical level, largely because detergent-mediated solubilization is required for purification and analysis, and several properties of integral membrane proteins can only be investigated when the molecule is properly embedded in a lipid bilayer. We present a method for the efficient reconstitution into proteoliposomes of integral membrane proteins from subcellular fractions. Integral membrane proteins were identified on high-resolution two-dimensional gels after selectiv…

research product

Membrane transport in the endocytic pathway: Animal versus plant cells

The endocytic pathway is a well established process in animal cells, but it is not well understood in plant cells. At the morphological level, all the compartments involved in endocytosis in animal cells seem to have counterparts in plant cells, and the organization of the pathway appears to share some striking similarities. Several Rab homologues have been found in plant cells, including homologues of Rab5, Rab7, and Rab11, markers of endocytic compartments in animal cells. Coat proteins are also present in plant cells, including clathrin, adaptins, and ADP ribosylation factor proteins. However, endocytic compartments in plant cells also exhibit specific features both in organization and f…

research product

Subcellular fractionation of tissue culture cells.

Cell fractionation techniques include some of the most important and widely used analytical tools in cell and molecular biology, and are essential for the development of cell-free assays that reconstitute complicated cellular processes. In addition to simple gradient systems, this unit discusses the immuno-purification of organelles, in particular endosomes. As antigens, purification can be achieved using endogenous or ectopically expressed proteins, provided that appropriate antibodies are available. Alternatively, tagged proteins can be used, when combined with anti-tag antibodies. Now that sequencing of the genomes of several organisms has been completed, biochemical strategies, and in p…

research product

Single-cell analysis of population context advances RNAi screening at multiple levels

Isogenic cells in culture show strong variability, which arises from dynamic adaptations to the microenvironment of individual cells. Here we study the influence of the cell population context, which determines a single cell's microenvironment, in image‐based RNAi screens. We developed a comprehensive computational approach that employs Bayesian and multivariate methods at the single‐cell level. We applied these methods to 45 RNA interference screens of various sizes, including 7 druggable genome and 2 genome‐wide screens, analysing 17 different mammalian virus infections and four related cell physiological processes. Analysing cell‐based screens at this depth reveals widespread RNAi‐induce…

research product

Specific release of membrane-bound annexin II and cortical cytoskeletal elements by sequestration of membrane cholesterol

Annexin II is an abundant protein which is present in the cytosol and on the cytoplasmic face of plasma membrane and early endosomes. It is generally believed that this association occurs via Ca(2+)-dependent binding to lipids, a mechanism typical for the annexin protein family. Although previous studies have shown that annexin II is involved in early endosome dynamics and organization, the precise biological role of the protein is unknown. In this study, we found that approximately 50% of the total cellular annexin was associated with membranes in a Ca(2+)-independent manner. This binding was extremely tight, since it resisted high salt and, to some extent, high pH treatments. We found, h…

research product

Selective targeting of avidin/mannose 6-phosphate receptor chimeras to early or late endosomes

Summary In this study we have used the Semliki forest virus expression system to transiently express chimeric proteins that contain transmembrane and cytoplasmic domains of the cation-independent mannose 6-phosphate receptor (CI-MPR) fused to chicken avidin. Immunofluorescence and electron microscopy studies showed that the chimeric protein with the entire cytoplasmic domain of CI-MPR was transported to late endosomes, where it accumulated. We made use of the biotin-binding capacity of lumenal avidin, and found that, in agreement with this distribution, the chimeric protein could be labelled with biotinylated HRP endocytosed for a long, but not a brief, period of time. However, truncation o…

research product