0000000000755178

AUTHOR

Arthemy V. Kiselev

showing 1 related works from this author

Universal cocycles and the graph complex action on homogeneous Poisson brackets by diffeomorphisms

2020

The graph complex acts on the spaces of Poisson bi-vectors $P$ by infinitesimal symmetries. We prove that whenever a Poisson structure is homogeneous, i.e. $P = L_{\vec{V}}(P)$ w.r.t. the Lie derivative along some vector field $\vec{V}$, but not quadratic (the coefficients of $P$ are not degree-two homogeneous polynomials), and whenever its velocity bi-vector $\dot{P}=Q(P)$, also homogeneous w.r.t. $\vec{V}$ by $L_{\vec{V}}(Q)=n\cdot Q$ whenever $Q(P)= Or(\gamma)(P^{\otimes^n})$ is obtained using the orientation morphism $Or$ from a graph cocycle $\gamma$ on $n$ vertices and $2n-2$ edges in each term, then the $1$-vector $\vec{X}=Or(\gamma)(\vec{V}\otimes P^{\otimes^{n-1}})$ is a Poisson co…

Mathematics - Differential GeometryPhysicsNuclear and High Energy PhysicsRadiationFOS: Physical sciencesMathematical Physics (math-ph)Atomic and Molecular Physics and OpticsAction (physics)CohomologyOrientation (vector space)CombinatoricsPoisson bracketDifferential Geometry (math.DG)Mathematics - Symplectic GeometryPoisson manifoldMathematics - Quantum AlgebraHomogeneous spaceLie algebraFOS: MathematicsCosetSymplectic Geometry (math.SG)Quantum Algebra (math.QA)Radiology Nuclear Medicine and imagingMathematical Physics
researchProduct